12n
0823
(K12n
0823
)
A knot diagram
1
Linearized knot diagam
4 5 10 8 3 12 1 5 6 4 7 6
Solving Sequence
2,5
3
6,8
9 10 4 1 7 12 11
c
2
c
5
c
8
c
9
c
4
c
1
c
7
c
12
c
11
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h257u
24
3084u
23
+ ··· + 64b + 37824, 77u
24
+ 410u
23
+ ··· + 128a + 14912,
u
25
12u
24
+ ··· + 640u 128i
I
u
2
= h−10a
5
u
2
+ 16a
4
u
2
+ ··· 109a + 76,
a
6
a
4
u
2
2a
4
u 2a
3
u
2
2a
4
3a
3
u + a
2
u
2
a
3
+ a
2
u + 4u
2
a a
2
+ 7au 3u
2
+ 4a 4u 2,
u
3
+ u
2
1i
I
u
3
= h2u
13
+ 7u
12
+ u
11
26u
10
32u
9
+ 24u
8
+ 74u
7
+ 23u
6
63u
5
51u
4
+ 16u
3
+ 26u
2
+ b 5,
5u
14
+ 17u
13
+ ··· + a 5,
u
15
+ 3u
14
u
13
13u
12
11u
11
+ 18u
10
+ 34u
9
u
8
39u
7
19u
6
+ 19u
5
+ 17u
4
4u
3
6u
2
+ 1i
I
u
4
= h−44a
7
u
2
73a
6
u
2
+ ··· 213a + 245, 2a
6
u
2
a
5
u
2
+ ··· + 7a + 13, u
3
+ u
2
1i
* 4 irreducible components of dim
C
= 0, with total 82 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h257u
24
3084u
23
+ · · · + 64b + 37824, 77u
24
+ 410u
23
+ · · · +
128a + 14912, u
25
12u
24
+ · · · + 640u 128i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
3
+ u
a
8
=
77
128
u
24
205
64
u
23
+ ··· + 432u
233
2
257
64
u
24
+
771
16
u
23
+ ··· +
4961
2
u 591
a
9
=
77
128
u
24
205
64
u
23
+ ··· + 432u
233
2
853
64
u
24
+
579
4
u
23
+ ··· +
9947
2
u 1105
a
10
=
77
128
u
24
801
64
u
23
+ ··· 1547u +
795
2
715
64
u
24
1849
16
u
23
+ ···
5931
2
u + 601
a
4
=
1
16
u
24
+
5
8
u
23
+ ··· + 4u +
1
2
1
8
u
23
+
5
4
u
22
+ ···
63
2
u + 8
a
1
=
15
16
u
24
+
167
16
u
23
+ ··· +
1391
4
u 71
15
16
u
24
+
77
8
u
23
+ ··· + 128u 16
a
7
=
65
8
u
24
1579
16
u
23
+ ··· 5798u + 1396
333
16
u
24
3509
16
u
23
+ ··· 5955u + 1208
a
12
=
41
16
u
24
+
455
16
u
23
+ ··· +
3727
4
u 191
41
16
u
24
+
199
8
u
23
+ ··· 40u + 56
a
11
=
421
64
u
24
+
4673
64
u
23
+ ··· +
11579
4
u 663
423
64
u
24
+
1921
32
u
23
+ ··· + 110u + 70
(ii) Obstruction class = 1
(iii) Cusp Shapes =
553
16
u
24
3059
8
u
23
+ ··· 15300u + 3482
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
3u
24
+ ··· + 2u + 1
c
2
, c
5
u
25
+ 12u
24
+ ··· + 640u + 128
c
3
, c
4
, c
8
c
10
u
25
u
24
+ ··· + 2u 1
c
6
, c
11
, c
12
u
25
+ 6u
24
+ ··· + 40u + 8
c
7
u
25
6u
24
+ ··· 56u + 464
c
9
u
25
+ u
24
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
27y
24
+ ··· + 54y 1
c
2
, c
5
y
25
12y
24
+ ··· + 114688y 16384
c
3
, c
4
, c
8
c
10
y
25
5y
24
+ ··· + 18y 1
c
6
, c
11
, c
12
y
25
+ 22y
24
+ ··· + 416y 64
c
7
y
25
2y
24
+ ··· 995392y 215296
c
9
y
25
23y
24
+ ··· + 66y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.439994 + 0.950507I
a = 0.449056 + 0.849462I
b = 0.905847 + 0.107899I
3.00593 0.74051I 5.05508 + 0.18570I
u = 0.439994 0.950507I
a = 0.449056 0.849462I
b = 0.905847 0.107899I
3.00593 + 0.74051I 5.05508 0.18570I
u = 0.617552 + 0.911770I
a = 0.520485 0.949952I
b = 1.202860 0.092876I
9.79766 + 1.38415I 2.19427 0.69570I
u = 0.617552 0.911770I
a = 0.520485 + 0.949952I
b = 1.202860 + 0.092876I
9.79766 1.38415I 2.19427 + 0.69570I
u = 0.155216 + 0.814496I
a = 0.569549 + 0.594113I
b = 0.482434 + 0.018405I
2.49837 1.57308I 4.64082 + 4.61190I
u = 0.155216 0.814496I
a = 0.569549 0.594113I
b = 0.482434 0.018405I
2.49837 + 1.57308I 4.64082 4.61190I
u = 0.473172 + 1.138930I
a = 0.327562 0.860505I
b = 0.840347 0.335702I
1.79770 4.91771I 8.41927 + 6.28509I
u = 0.473172 1.138930I
a = 0.327562 + 0.860505I
b = 0.840347 + 0.335702I
1.79770 + 4.91771I 8.41927 6.28509I
u = 1.097810 + 0.681530I
a = 0.926077 0.303192I
b = 1.55305 + 0.96565I
8.25231 + 4.52896I 4.39857 4.77646I
u = 1.097810 0.681530I
a = 0.926077 + 0.303192I
b = 1.55305 0.96565I
8.25231 4.52896I 4.39857 + 4.77646I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.569528 + 1.179720I
a = 0.270690 + 0.922850I
b = 0.887146 + 0.468456I
7.44241 8.72137I 5.19162 + 6.35185I
u = 0.569528 1.179720I
a = 0.270690 0.922850I
b = 0.887146 0.468456I
7.44241 + 8.72137I 5.19162 6.35185I
u = 1.32152
a = 0.469575
b = 1.93007
5.64216 30.1590
u = 1.306160 + 0.296832I
a = 0.548745 + 0.102029I
b = 1.63919 0.62194I
1.99285 + 5.34908I 13.9471 13.2059I
u = 1.306160 0.296832I
a = 0.548745 0.102029I
b = 1.63919 + 0.62194I
1.99285 5.34908I 13.9471 + 13.2059I
u = 1.214200 + 0.704239I
a = 0.907328 + 0.113165I
b = 1.41310 1.02138I
0.61951 + 6.87942I 8.00000 4.38169I
u = 1.214200 0.704239I
a = 0.907328 0.113165I
b = 1.41310 + 1.02138I
0.61951 6.87942I 8.00000 + 4.38169I
u = 1.22071 + 0.77249I
a = 0.990264 0.040589I
b = 1.37746 + 1.13069I
0.51235 + 11.71780I 8.00000 8.48371I
u = 1.22071 0.77249I
a = 0.990264 + 0.040589I
b = 1.37746 1.13069I
0.51235 11.71780I 8.00000 + 8.48371I
u = 1.20009 + 0.80742I
a = 1.066910 + 0.022071I
b = 1.40118 1.21648I
5.4265 + 15.7509I 8.00000 8.57855I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.20009 0.80742I
a = 1.066910 0.022071I
b = 1.40118 + 1.21648I
5.4265 15.7509I 8.00000 + 8.57855I
u = 0.338292
a = 1.19055
b = 0.300946
0.647725 15.2540
u = 1.66374
a = 0.444714
b = 0.277763
6.10335 20.9380
u = 1.64375 + 0.30866I
a = 0.440186 0.060519I
b = 0.278561 0.018758I
2.17466 4.23595I 0
u = 1.64375 0.30866I
a = 0.440186 + 0.060519I
b = 0.278561 + 0.018758I
2.17466 + 4.23595I 0
7
II. I
u
2
=
h−10a
5
u
2
+16a
4
u
2
+· · ·109a +76, a
4
u
2
2a
3
u
2
+· · ·+4a 2, u
3
+u
2
1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
2
+ u 1
a
8
=
a
0.169492a
5
u
2
0.271186a
4
u
2
+ ··· + 1.84746a 1.28814
a
9
=
a
0.169492a
5
u
2
0.271186a
4
u
2
+ ··· + 1.84746a 1.28814
a
10
=
0.135593a
5
u
2
+ 0.0169492a
4
u
2
+ ··· 0.677966a + 0.830508
0.457627a
5
u
2
0.0677966a
4
u
2
+ ··· + 0.711864a 1.32203
a
4
=
a
2
u
0.0677966a
5
u
2
+ 0.491525a
4
u
2
+ ··· 0.661017a + 1.08475
a
1
=
0.203390a
5
u
2
0.525424a
4
u
2
+ ··· + 1.01695a + 1.25424
0.610169a
5
u
2
+ 0.423729a
4
u
2
+ ··· + 1.05085a + 0.762712
a
7
=
0.271186a
5
u
2
+ 1.03390a
4
u
2
+ ··· 1.35593a + 0.661017
a
5
u
2
a
3
u
2
+ ··· a
2
+ 1
a
12
=
0.0677966a
5
u
2
0.508475a
4
u
2
+ ··· + 0.338983a + 2.08475
0.0169492a
5
u
2
+ 0.627119a
4
u
2
+ ··· + 0.915254a + 0.728814
a
11
=
0.237288a
5
u
2
+ 0.220339a
4
u
2
+ ··· + 1.18644a 1.20339
1.67797a
5
u
2
0.0847458a
4
u
2
+ ··· + 0.389831a + 0.847458
(ii) Obstruction class = 1
(iii) Cusp Shapes =
152
59
a
5
u
2
+
40
59
a
4
u
2
+ ···
184
59
a +
1134
59
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
2u
17
+ ··· 252u 27
c
2
, c
5
(u
3
u
2
+ 1)
6
c
3
, c
4
, c
8
c
10
u
18
3u
16
+ ··· + 6u 11
c
6
, c
11
, c
12
(u
3
+ 2u + 1)
6
c
7
(u
3
+ 3u
2
+ 5u + 2)
6
c
9
u
18
+ u
16
+ ··· 52u 43
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
6y
17
+ ··· 81000y + 729
c
2
, c
5
(y
3
y
2
+ 2y 1)
6
c
3
, c
4
, c
8
c
10
y
18
6y
17
+ ··· 1136y + 121
c
6
, c
11
, c
12
(y
3
+ 4y
2
+ 4y 1)
6
c
7
(y
3
+ y
2
+ 13y 4)
6
c
9
y
18
+ 2y
17
+ ··· 17840y + 1849
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.927224 0.015489I
b = 0.407238 0.969235I
2.69787 2.82812I 17.1261 + 2.9794I
u = 0.877439 + 0.744862I
a = 1.104550 0.072177I
b = 1.63644 + 0.28753I
7.53006 + 2.30982I 5.17231 0.22957I
u = 0.877439 + 0.744862I
a = 0.187603 + 1.191150I
b = 0.734633 + 0.080557I
7.53006 + 2.30982I 5.17231 0.22957I
u = 0.877439 + 0.744862I
a = 1.241110 0.215785I
b = 1.66753 0.94699I
7.53006 7.96606I 5.17231 + 6.18847I
u = 0.877439 + 0.744862I
a = 0.346778 1.240900I
b = 0.918807 + 0.323963I
7.53006 7.96606I 5.17231 + 6.18847I
u = 0.877439 + 0.744862I
a = 0.529395 + 0.353208I
b = 0.254152 + 1.224170I
2.69787 2.82812I 17.1261 + 2.9794I
u = 0.877439 0.744862I
a = 0.927224 + 0.015489I
b = 0.407238 + 0.969235I
2.69787 + 2.82812I 17.1261 2.9794I
u = 0.877439 0.744862I
a = 1.104550 + 0.072177I
b = 1.63644 0.28753I
7.53006 2.30982I 5.17231 + 0.22957I
u = 0.877439 0.744862I
a = 0.187603 1.191150I
b = 0.734633 0.080557I
7.53006 2.30982I 5.17231 + 0.22957I
u = 0.877439 0.744862I
a = 1.241110 + 0.215785I
b = 1.66753 + 0.94699I
7.53006 + 7.96606I 5.17231 6.18847I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 0.744862I
a = 0.346778 + 1.240900I
b = 0.918807 0.323963I
7.53006 + 7.96606I 5.17231 6.18847I
u = 0.877439 0.744862I
a = 0.529395 0.353208I
b = 0.254152 1.224170I
2.69787 + 2.82812I 17.1261 2.9794I
u = 0.754878
a = 0.737750 + 0.212805I
b = 0.61766 + 2.03584I
3.39248 + 5.13794I 11.70158 3.20902I
u = 0.754878
a = 0.737750 0.212805I
b = 0.61766 2.03584I
3.39248 5.13794I 11.70158 + 3.20902I
u = 0.754878
a = 0.90888 + 1.32075I
b = 0.090652 1.376170I
3.39248 5.13794I 11.70158 + 3.20902I
u = 0.754878
a = 0.90888 1.32075I
b = 0.090652 + 1.376170I
3.39248 + 5.13794I 11.70158 3.20902I
u = 0.754878
a = 1.94302
b = 1.43643
6.83546 23.6550
u = 0.754878
a = 2.28528
b = 0.382411
6.83546 23.6550
12
III.
I
u
3
= h2u
13
+7u
12
+· · ·+b5, 5u
14
+17u
13
+· · ·+a5, u
15
+3u
14
+· · ·6u
2
+1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
3
+ u
a
8
=
5u
14
17u
13
+ ··· + 4u + 5
2u
13
7u
12
+ ··· 26u
2
+ 5
a
9
=
5u
14
17u
13
+ ··· + 4u + 5
3u
14
+ 8u
13
+ ··· 5u + 3
a
10
=
7u
14
24u
13
+ ··· + 9u + 5
u
14
+ 2u
13
+ ··· 2u + 2
a
4
=
u
14
+ 4u
13
+ ··· 10u 6
u
14
+ 3u
13
+ ··· 4u
2
5u
a
1
=
5u
14
+ 16u
13
+ ··· 17u 8
u
13
+ 3u
12
+ ··· 4u 4
a
7
=
9u
14
32u
13
+ ··· + 15u + 15
4u
14
14u
13
+ ··· + 10u + 3
a
12
=
6u
14
+ 19u
13
+ ··· 21u 8
u
14
+ 4u
13
+ ··· 7u 4
a
11
=
3u
14
+ 13u
13
+ ··· 3u 4
3u
14
+ 9u
13
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
14
+ 21u
13
11u
12
84u
11
54u
10
+ 113u
9
+ 166u
8
35u
7
173u
6
38u
5
+ 82u
4
+ 34u
3
32u
2
6u + 9
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 3u
14
+ ··· + 4u
2
1
c
2
u
15
+ 3u
14
+ ··· 6u
2
+ 1
c
3
, c
8
u
15
+ u
14
+ ··· + 6u
2
1
c
4
, c
10
u
15
u
14
+ ··· 6u
2
+ 1
c
5
u
15
3u
14
+ ··· + 6u
2
1
c
6
u
15
+ u
14
+ ··· 3u
2
+ 1
c
7
u
15
u
14
+ ··· 2u + 1
c
9
u
15
+ u
14
+ ··· 4u
2
+ 1
c
11
, c
12
u
15
u
14
+ ··· + 3u
2
1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 7y
14
+ ··· + 8y 1
c
2
, c
5
y
15
11y
14
+ ··· + 12y 1
c
3
, c
4
, c
8
c
10
y
15
15y
14
+ ··· + 12y 1
c
6
, c
11
, c
12
y
15
+ 15y
14
+ ··· + 6y 1
c
7
y
15
5y
14
+ ··· + 2y 1
c
9
y
15
+ 3y
14
+ ··· + 8y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.772963 + 0.597189I
a = 0.827811 0.016279I
b = 0.343553 1.218360I
1.77519 3.34740I 8.50075 + 8.05329I
u = 0.772963 0.597189I
a = 0.827811 + 0.016279I
b = 0.343553 + 1.218360I
1.77519 + 3.34740I 8.50075 8.05329I
u = 1.21630
a = 1.10982
b = 0.609066
8.60341 19.2250
u = 1.216020 + 0.268411I
a = 1.037430 0.282211I
b = 0.591253 0.100818I
4.59696 + 3.78442I 13.45506 3.52568I
u = 1.216020 0.268411I
a = 1.037430 + 0.282211I
b = 0.591253 + 0.100818I
4.59696 3.78442I 13.45506 + 3.52568I
u = 0.741693 + 1.001970I
a = 0.645240 + 0.343179I
b = 0.168411 + 0.864224I
1.02527 2.06106I 10.76904 + 5.89866I
u = 0.741693 1.001970I
a = 0.645240 0.343179I
b = 0.168411 0.864224I
1.02527 + 2.06106I 10.76904 5.89866I
u = 0.581097 + 0.353670I
a = 1.215450 0.514042I
b = 0.12631 + 1.63261I
4.31889 5.65349I 3.28441 + 7.61935I
u = 0.581097 0.353670I
a = 1.215450 + 0.514042I
b = 0.12631 1.63261I
4.31889 + 5.65349I 3.28441 7.61935I
u = 0.661672
a = 2.39502
b = 0.953687
6.37007 2.43460
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.577868 + 0.178736I
a = 2.47388 + 1.02720I
b = 0.998690 + 0.209089I
1.98344 1.67719I 4.13214 1.25424I
u = 0.577868 0.178736I
a = 2.47388 1.02720I
b = 0.998690 0.209089I
1.98344 + 1.67719I 4.13214 + 1.25424I
u = 1.41521
a = 0.382739
b = 1.30454
5.30168 4.34420
u = 1.42952 + 0.46018I
a = 0.430407 0.024659I
b = 0.868313 0.551235I
1.65539 4.71343I 7.35653 + 5.31534I
u = 1.42952 0.46018I
a = 0.430407 + 0.024659I
b = 0.868313 + 0.551235I
1.65539 + 4.71343I 7.35653 5.31534I
17
IV. I
u
4
=
h−44a
7
u
2
73a
6
u
2
+· · ·213a+245, 2a
6
u
2
a
5
u
2
+· · ·+7a+13, u
3
+u
2
1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
2
+ u 1
a
8
=
a
0.273292a
7
u
2
+ 0.453416a
6
u
2
+ ··· + 1.32298a 1.52174
a
9
=
a
0.273292a
7
u
2
+ 0.453416a
6
u
2
+ ··· + 1.32298a 1.52174
a
10
=
0.677019a
7
u
2
0.645963a
6
u
2
+ ··· + 0.745342a + 1.56522
0.658385a
7
u
2
0.683230a
6
u
2
+ ··· + 1.40373a 0.652174
a
4
=
a
2
u
1.36025a
7
u
2
+ 0.279503a
6
u
2
+ ··· + 0.0621118a 0.869565
a
1
=
1.02484a
7
u
2
1.95031a
6
u
2
+ ··· + 2.78882a + 0.956522
1.16149a
7
u
2
0.677019a
6
u
2
+ ··· 0.372671a + 1.21739
a
7
=
1.72671a
7
u
2
2.54658a
6
u
2
+ ··· + 5.32298a + 2.47826
0.00621118a
7
u
2
2.01242a
6
u
2
+ ··· + 2.55280a 1.73913
a
12
=
0.608696a
7
u
2
2.21739a
6
u
2
+ ··· + 3.17391a 0.434783
15
7
a
7
u
2
5
7
a
6
u
2
+ ··· +
9
7
a + 1
a
11
=
0.950311a
7
u
2
+ 1.90062a
6
u
2
+ ··· 2.57764a 2.91304
0.124224a
7
u
2
+ 3.75155a
6
u
2
+ ··· 4.94410a 0.782609
(ii) Obstruction class = 1
(iii) Cusp Shapes =
52
23
a
7
u
2
80
23
a
6
u
2
+ ··· +
248
23
a +
254
23
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
5u
23
+ ··· 20u + 109
c
2
, c
5
(u
3
u
2
+ 1)
8
c
3
, c
4
, c
8
c
10
u
24
+ u
23
+ ··· 24u + 7
c
6
, c
11
, c
12
(u
4
u
3
+ 2u
2
2u + 1)
6
c
7
(u
2
u + 1)
12
c
9
u
24
+ 3u
23
+ ··· + 20u + 19
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 9y
23
+ ··· + 27504y + 11881
c
2
, c
5
(y
3
y
2
+ 2y 1)
8
c
3
, c
4
, c
8
c
10
y
24
15y
23
+ ··· 716y + 49
c
6
, c
11
, c
12
(y
4
+ 3y
3
+ 2y
2
+ 1)
6
c
7
(y
2
+ y + 1)
12
c
9
y
24
+ 5y
23
+ ··· + 1424y + 361
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.040773 0.997477I
b = 0.617792 + 0.097671I
1.37919 0.79824I 8.49024 0.48465I
u = 0.877439 + 0.744862I
a = 0.964624 0.327636I
b = 0.525863 + 0.945972I
1.37919 4.85801I 8.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 1.039300 0.058321I
b = 1.39358 0.47039I
1.37919 0.79824I 8.49024 0.48465I
u = 0.877439 + 0.744862I
a = 1.033460 + 0.263154I
b = 0.303126 + 0.916009I
1.37919 0.79824I 8.49024 0.48465I
u = 0.877439 + 0.744862I
a = 0.254667 + 1.040960I
b = 0.745244 0.312818I
1.37919 4.85801I 8.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 0.747266 0.522075I
b = 0.56367 1.44433I
1.37919 4.85801I 8.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 1.121100 + 0.196208I
b = 1.43883 + 0.82244I
1.37919 4.85801I 8.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 0.159736 0.339671I
b = 0.154539 1.116840I
1.37919 0.79824I 8.49024 0.48465I
u = 0.877439 0.744862I
a = 0.040773 + 0.997477I
b = 0.617792 0.097671I
1.37919 + 0.79824I 8.49024 + 0.48465I
u = 0.877439 0.744862I
a = 0.964624 + 0.327636I
b = 0.525863 0.945972I
1.37919 + 4.85801I 8.49024 6.44355I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 0.744862I
a = 1.039300 + 0.058321I
b = 1.39358 + 0.47039I
1.37919 + 0.79824I 8.49024 + 0.48465I
u = 0.877439 0.744862I
a = 1.033460 0.263154I
b = 0.303126 0.916009I
1.37919 + 0.79824I 8.49024 + 0.48465I
u = 0.877439 0.744862I
a = 0.254667 1.040960I
b = 0.745244 + 0.312818I
1.37919 + 4.85801I 8.49024 6.44355I
u = 0.877439 0.744862I
a = 0.747266 + 0.522075I
b = 0.56367 + 1.44433I
1.37919 + 4.85801I 8.49024 6.44355I
u = 0.877439 0.744862I
a = 1.121100 0.196208I
b = 1.43883 0.82244I
1.37919 + 4.85801I 8.49024 6.44355I
u = 0.877439 0.744862I
a = 0.159736 + 0.339671I
b = 0.154539 + 1.116840I
1.37919 + 0.79824I 8.49024 + 0.48465I
u = 0.754878
a = 0.935402 + 0.185618I
b = 0.56365 1.65106I
2.75839 + 2.02988I 15.0195 3.4641I
u = 0.754878
a = 0.935402 0.185618I
b = 0.56365 + 1.65106I
2.75839 2.02988I 15.0195 + 3.4641I
u = 0.754878
a = 1.027300 + 0.800722I
b = 0.28063 1.38647I
2.75839 + 2.02988I 15.0195 3.4641I
u = 0.754878
a = 1.027300 0.800722I
b = 0.28063 + 1.38647I
2.75839 2.02988I 15.0195 + 3.4641I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.754878
a = 1.88775 + 0.07859I
b = 1.63567 + 0.61747I
2.75839 + 2.02988I 15.0195 3.4641I
u = 0.754878
a = 1.88775 0.07859I
b = 1.63567 0.61747I
2.75839 2.02988I 15.0195 + 3.4641I
u = 0.754878
a = 2.35710 + 0.41119I
b = 0.190292 0.406791I
2.75839 2.02988I 15.0195 + 3.4641I
u = 0.754878
a = 2.35710 0.41119I
b = 0.190292 + 0.406791I
2.75839 + 2.02988I 15.0195 3.4641I
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
+ 3u
14
+ ··· + 4u
2
1)(u
18
2u
17
+ ··· 252u 27)
· (u
24
5u
23
+ ··· 20u + 109)(u
25
3u
24
+ ··· + 2u + 1)
c
2
((u
3
u
2
+ 1)
14
)(u
15
+ 3u
14
+ ··· 6u
2
+ 1)
· (u
25
+ 12u
24
+ ··· + 640u + 128)
c
3
, c
8
(u
15
+ u
14
+ ··· + 6u
2
1)(u
18
3u
16
+ ··· + 6u 11)
· (u
24
+ u
23
+ ··· 24u + 7)(u
25
u
24
+ ··· + 2u 1)
c
4
, c
10
(u
15
u
14
+ ··· 6u
2
+ 1)(u
18
3u
16
+ ··· + 6u 11)
· (u
24
+ u
23
+ ··· 24u + 7)(u
25
u
24
+ ··· + 2u 1)
c
5
((u
3
u
2
+ 1)
14
)(u
15
3u
14
+ ··· + 6u
2
1)
· (u
25
+ 12u
24
+ ··· + 640u + 128)
c
6
((u
3
+ 2u + 1)
6
)(u
4
u
3
+ 2u
2
2u + 1)
6
(u
15
+ u
14
+ ··· 3u
2
+ 1)
· (u
25
+ 6u
24
+ ··· + 40u + 8)
c
7
((u
2
u + 1)
12
)(u
3
+ 3u
2
+ 5u + 2)
6
(u
15
u
14
+ ··· 2u + 1)
· (u
25
6u
24
+ ··· 56u + 464)
c
9
(u
15
+ u
14
+ ··· 4u
2
+ 1)(u
18
+ u
16
+ ··· 52u 43)
· (u
24
+ 3u
23
+ ··· + 20u + 19)(u
25
+ u
24
+ ··· 2u + 1)
c
11
, c
12
((u
3
+ 2u + 1)
6
)(u
4
u
3
+ 2u
2
2u + 1)
6
(u
15
u
14
+ ··· + 3u
2
1)
· (u
25
+ 6u
24
+ ··· + 40u + 8)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
+ 7y
14
+ ··· + 8y 1)(y
18
6y
17
+ ··· 81000y + 729)
· (y
24
+ 9y
23
+ ··· + 27504y + 11881)(y
25
27y
24
+ ··· + 54y 1)
c
2
, c
5
((y
3
y
2
+ 2y 1)
14
)(y
15
11y
14
+ ··· + 12y 1)
· (y
25
12y
24
+ ··· + 114688y 16384)
c
3
, c
4
, c
8
c
10
(y
15
15y
14
+ ··· + 12y 1)(y
18
6y
17
+ ··· 1136y + 121)
· (y
24
15y
23
+ ··· 716y + 49)(y
25
5y
24
+ ··· + 18y 1)
c
6
, c
11
, c
12
((y
3
+ 4y
2
+ 4y 1)
6
)(y
4
+ 3y
3
+ 2y
2
+ 1)
6
(y
15
+ 15y
14
+ ··· + 6y 1)
· (y
25
+ 22y
24
+ ··· + 416y 64)
c
7
((y
2
+ y + 1)
12
)(y
3
+ y
2
+ 13y 4)
6
(y
15
5y
14
+ ··· + 2y 1)
· (y
25
2y
24
+ ··· 995392y 215296)
c
9
(y
15
+ 3y
14
+ ··· + 8y 1)(y
18
+ 2y
17
+ ··· 17840y + 1849)
· (y
24
+ 5y
23
+ ··· + 1424y + 361)(y
25
23y
24
+ ··· + 66y 1)
25