12n
0835
(K12n
0835
)
A knot diagram
1
Linearized knot diagam
4 6 12 9 2 10 12 6 4 8 3 7
Solving Sequence
3,12 4,8
7 1 11 10 6 2 5 9
c
3
c
7
c
12
c
11
c
10
c
6
c
2
c
5
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−11962u
12
32982u
11
+ ··· + 180027b 81583,
51167u
12
51141u
11
+ ··· + 180027a + 431806,
u
13
+ 2u
12
+ u
11
12u
10
10u
9
+ 12u
8
+ 39u
7
+ u
6
48u
5
18u
4
+ 21u
3
+ 18u
2
+ 3u 1i
I
u
2
= hb, a + u, u
3
u
2
+ 1i
I
u
3
= h34532u
11
8910u
10
+ ··· + 191471b 108223,
126317u
11
132222u
10
+ ··· + 191471a 196501,
u
12
2u
11
+ u
10
16u
8
+ 14u
7
+ 29u
6
12u
5
+ 4u
4
+ 16u
3
5u
2
2u + 1i
I
u
4
= h−188u
7
516u
6
1817u
5
4442u
4
8033u
3
9745u
2
+ 4095b 9869u 4774,
209u
7
+ 138u
6
+ 2216u
5
+ 5156u
4
+ 6164u
3
+ 20875u
2
+ 28665a + 9512u + 2737,
u
8
+ 2u
7
+ 10u
6
+ 24u
5
+ 45u
4
+ 76u
3
+ 92u
2
+ 70u + 49i
* 4 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.20 × 10
4
u
12
3.30 × 10
4
u
11
+ · · · + 1.80 × 10
5
b 8.16 × 10
4
, 5.12 ×
10
4
u
12
5.11×10
4
u
11
+· · · +1.80×10
5
a+4.32×10
5
, u
13
+2u
12
+· · · +3u 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
0.284218u
12
+ 0.284074u
11
+ ··· 3.97384u 2.39856
0.0664456u
12
+ 0.183206u
11
+ ··· + 0.314458u + 0.453171
a
7
=
0.284218u
12
+ 0.284074u
11
+ ··· 3.97384u 2.39856
0.0888700u
12
+ 0.283657u
11
+ ··· + 1.45177u + 0.168808
a
1
=
0.0237131u
12
0.0981353u
11
+ ··· 2.62369u + 1.88978
0.105179u
12
+ 0.356713u
11
+ ··· 0.902920u + 0.234726
a
11
=
u
u
a
10
=
0.222456u
12
0.0646236u
11
+ ··· + 1.26037u 1.50950
0.0856205u
12
+ 0.383542u
11
+ ··· + 1.88790u + 0.0960689
a
6
=
0.509496u
12
1.24145u
11
+ ··· 8.54774u 0.268115
u
a
2
=
0.222456u
12
+ 0.0646236u
11
+ ··· 1.26037u + 1.50950
u
2
a
5
=
0.889783u
12
1.80328u
11
+ ··· 7.70561u 0.0456598
u
3
+ u
a
9
=
0.506818u
12
0.610925u
11
+ ··· 1.99085u 1.22528
0.141223u
12
+ 0.341066u
11
+ ··· + 1.53626u + 0.118493
(ii) Obstruction class = 1
(iii) Cusp Shapes =
133277
60009
u
12
+
97412
20003
u
11
+ ··· +
2500157
60009
u +
279872
60009
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 2u
12
+ ··· + 73u + 5
c
2
, c
3
, c
5
c
11
u
13
+ 2u
12
+ ··· + 3u 1
c
4
, c
7
, c
9
c
12
u
13
+ 10u
11
+ ··· 12u 4
c
6
u
13
3u
12
+ ··· + 112u 19
c
8
, c
10
u
13
+ 2u
12
+ ··· + 5u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
38y
12
+ ··· + 7329y 25
c
2
, c
3
, c
5
c
11
y
13
2y
12
+ ··· + 45y 1
c
4
, c
7
, c
9
c
12
y
13
+ 20y
12
+ ··· + 208y 16
c
6
y
13
+ 7y
12
+ ··· + 2094y 361
c
8
, c
10
y
13
8y
12
+ ··· + 7y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.122400 + 0.448785I
a = 0.292793 + 0.874754I
b = 0.109259 + 0.767460I
6.52437 4.35431I 2.69323 + 5.57961I
u = 1.122400 0.448785I
a = 0.292793 0.874754I
b = 0.109259 0.767460I
6.52437 + 4.35431I 2.69323 5.57961I
u = 0.749285 + 0.043693I
a = 0.509626 + 0.065149I
b = 0.738849 + 0.256795I
1.302700 + 0.032683I 7.31648 0.16173I
u = 0.749285 0.043693I
a = 0.509626 0.065149I
b = 0.738849 0.256795I
1.302700 0.032683I 7.31648 + 0.16173I
u = 1.265880 + 0.291483I
a = 0.18470 1.44719I
b = 0.35048 2.57213I
14.5051 3.1980I 6.84015 + 2.15870I
u = 1.265880 0.291483I
a = 0.18470 + 1.44719I
b = 0.35048 + 2.57213I
14.5051 + 3.1980I 6.84015 2.15870I
u = 0.438416 + 0.418996I
a = 1.83391 1.67711I
b = 0.675501 + 0.073236I
8.52319 + 2.72289I 7.74001 0.35750I
u = 0.438416 0.418996I
a = 1.83391 + 1.67711I
b = 0.675501 0.073236I
8.52319 2.72289I 7.74001 + 0.35750I
u = 0.86722 + 1.24197I
a = 0.518889 0.563420I
b = 0.04501 1.85139I
4.79571 + 2.82647I 1.37286 2.37043I
u = 0.86722 1.24197I
a = 0.518889 + 0.563420I
b = 0.04501 + 1.85139I
4.79571 2.82647I 1.37286 + 2.37043I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.158979
a = 2.81443
b = 0.486240
0.852515 11.9090
u = 1.41284 + 1.83586I
a = 0.413448 + 0.805929I
b = 0.26505 + 2.03068I
0.95941 + 10.95210I 1.49177 4.40872I
u = 1.41284 1.83586I
a = 0.413448 0.805929I
b = 0.26505 2.03068I
0.95941 10.95210I 1.49177 + 4.40872I
6
II. I
u
2
= hb, a + u, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
u
0
a
7
=
u
u
2
+ 1
a
1
=
u
2
1
1
a
11
=
u
u
a
10
=
u
2
+ u + 1
u
a
6
=
2u
2
u 1
u
a
2
=
u
2
u 1
u
2
a
5
=
2u
2
u
2
u 1
a
9
=
u + 1
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
4u 3
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
u
3
+ u
2
1
c
3
, c
5
u
3
u
2
+ 1
c
4
, c
7
u
3
+ u
2
+ 2u + 1
c
6
u
3
+ 2u
2
+ 3u + 1
c
8
, c
9
, c
10
c
12
u
3
u
2
+ 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
11
y
3
y
2
+ 2y 1
c
4
, c
7
, c
8
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
6
y
3
+ 2y
2
+ 5y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 0
8.03068 3.77083I 5.21928 + 4.86340I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 0
8.03068 + 3.77083I 5.21928 4.86340I
u = 0.754878
a = 0.754878
b = 0
0.387983 3.43860
10
III. I
u
3
= h34532u
11
8910u
10
+ · · · + 191471b 108223, 1.26 × 10
5
u
11
1.32 × 10
5
u
10
+ · · · + 1.91 × 10
5
a 1.97 × 10
5
, u
12
2u
11
+ · · · 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
0.659719u
11
+ 0.690559u
10
+ ··· 6.35697u + 1.02627
0.180351u
11
+ 0.0465345u
10
+ ··· 1.55862u + 0.565219
a
7
=
0.659719u
11
+ 0.690559u
10
+ ··· 6.35697u + 1.02627
0.460054u
11
+ 0.535402u
10
+ ··· 2.15666u + 1.19410
a
1
=
1.65524u
11
2.78398u
10
+ ··· 1.00772u 6.09660
0.224859u
11
0.296390u
10
+ ··· 0.503115u 1.64700
a
11
=
u
u
a
10
=
1.52166u
11
+ 2.61616u
10
+ ··· + 1.10685u + 4.97611
0.129111u
11
+ 0.261251u
10
+ ··· + 1.26558u + 1.19082
a
6
=
1.16060u
11
+ 2.08065u
10
+ ··· + 1.32344u + 4.67364
0.250257u
11
+ 0.475545u
10
+ ··· 0.181777u + 1.44895
a
2
=
1.52166u
11
2.61616u
10
+ ··· 1.10685u 4.97611
0.112215u
11
0.111991u
10
+ ··· 0.568222u 1.54765
a
5
=
0.943589u
11
1.35098u
10
+ ··· + 0.790851u 1.13909
0.512187u
11
0.959487u
10
+ ··· + 0.496691u 1.18240
a
9
=
1.37117u
11
+ 2.29907u
10
+ ··· + 0.508615u + 4.21244
0.170658u
11
+ 0.355380u
10
+ ··· + 1.08285u + 1.20695
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8084
11263
u
11
+
12088
11263
u
10
3464
11263
u
9
+
5702
11263
u
8
+
118154
11263
u
7
36546
11263
u
6
248588
11263
u
5
96058
11263
u
4
30924
11263
u
3
100428
11263
u
2
7174
1609
u +
29716
11263
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
7u
5
+ 14u
4
+ u
3
28u
2
+ 31u 11)
2
c
2
, c
11
u
12
+ 2u
11
+ ··· + 2u + 1
c
3
, c
5
u
12
2u
11
+ ··· 2u + 1
c
4
, c
7
u
12
2u
11
+ ··· + 8u + 4
c
6
(u
3
u
2
+ u + 1)
4
c
8
, c
10
u
12
2u
11
+ ··· 40u + 29
c
9
, c
12
u
12
+ 2u
11
+ ··· 8u + 4
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
21y
5
+ 154y
4
373y
3
+ 414y
2
345y + 121)
2
c
2
, c
3
, c
5
c
11
y
12
2y
11
+ ··· 14y + 1
c
4
, c
7
, c
9
c
12
y
12
+ 12y
11
+ ··· 256y + 16
c
6
(y
3
+ y
2
+ 3y 1)
4
c
8
, c
10
y
12
+ 4y
11
+ ··· 5892y + 841
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.911570
a = 0.298859
b = 0.487547
0.365976 3.08740
u = 0.347067 + 0.717063I
a = 1.20188 + 1.50579I
b = 0.17433 + 2.36142I
13.14100 3.17729I 0.45631 + 2.23029I
u = 0.347067 0.717063I
a = 1.20188 1.50579I
b = 0.17433 2.36142I
13.14100 + 3.17729I 0.45631 2.23029I
u = 1.218800 + 0.206735I
a = 0.505212 + 0.220973I
b = 0.190428 + 0.825741I
5.24529 + 3.17729I 0.45631 2.23029I
u = 1.218800 0.206735I
a = 0.505212 0.220973I
b = 0.190428 0.825741I
5.24529 3.17729I 0.45631 + 2.23029I
u = 0.446425
a = 1.52685
b = 0.487547
0.365976 3.08740
u = 0.341414 + 0.167973I
a = 2.13354 3.14045I
b = 0.190428 0.825741I
5.24529 + 3.17729I 0.45631 2.23029I
u = 0.341414 0.167973I
a = 2.13354 + 3.14045I
b = 0.190428 + 0.825741I
5.24529 3.17729I 0.45631 + 2.23029I
u = 1.94996 + 0.26394I
a = 0.121333 1.079840I
b = 0.17433 2.36142I
13.14100 3.17729I 0.45631 + 2.23029I
u = 1.94996 0.26394I
a = 0.121333 + 1.079840I
b = 0.17433 + 2.36142I
13.14100 + 3.17729I 0.45631 2.23029I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.25935 + 2.11008I
a = 0.402681 0.542364I
b = 1.68959I
7.52971 3.08738 + 0.I
u = 0.25935 2.11008I
a = 0.402681 + 0.542364I
b = 1.68959I
7.52971 3.08738 + 0.I
15
IV. I
u
4
= h−188u
7
516u
6
+ · · · + 4095b 4774, 209u
7
+ 138u
6
+ · · · +
28665a + 2737, u
8
+ 2u
7
+ · · · + 70u + 49i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
0.00729112u
7
0.00481423u
6
+ ··· 0.331833u 0.0954823
0.0459096u
7
+ 0.126007u
6
+ ··· + 2.41001u + 1.16581
a
7
=
0.00729112u
7
0.00481423u
6
+ ··· 0.331833u 0.0954823
0.0219780u
7
+ 0.0234432u
6
+ ··· + 2.08352u + 0.687179
a
1
=
0.0163265u
7
0.00544218u
6
+ ··· + 0.673469u + 0.304762
0.100611u
7
+ 0.141392u
6
+ ··· + 2.81343u + 1.52650
a
11
=
u
u
a
10
=
0.0176173u
7
+ 0.0135008u
6
+ ··· + 0.273295u 0.644933
0.00366300u
7
+ 0.115018u
6
+ ··· + 2.68059u + 1.22564
a
6
=
0.0278039u
7
0.0736787u
6
+ ··· 1.81169u 1.14383
0.0798535u
7
+ 0.134066u
6
+ ··· + 2.35678u 0.174359
a
2
=
0.0176173u
7
0.0135008u
6
+ ··· 0.273295u + 0.644933
0.104029u
7
+ 0.0131868u
6
+ ··· + 0.288645u 1.40513
a
5
=
0.0431188u
7
0.0986918u
6
+ ··· + 0.194244u 0.0923077
0.196337u
7
+ 0.351648u
6
+ ··· 1.28059u 3.35897
a
9
=
0.0561312u
7
0.106646u
6
+ ··· 1.74917u 0.805617
0.189988u
7
+ 0.361172u
6
+ ··· + 4.37973u 0.114530
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
2u
3
+ u
2
+ 5)
2
c
2
, c
3
, c
5
c
11
u
8
+ 2u
7
+ 10u
6
+ 24u
5
+ 45u
4
+ 76u
3
+ 92u
2
+ 70u + 49
c
4
, c
7
, c
9
c
12
u
8
2u
7
4u
5
+ 10u
4
+ 4u
3
+ 12u
2
+ 4
c
6
(u
2
+ 1)
4
c
8
, c
10
u
8
+ 2u
7
4u
6
18u
5
+ 10u
4
+ 98u
3
+ 156u
2
+ 118u + 41
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
2y
3
+ 11y
2
+ 10y + 25)
2
c
2
, c
3
, c
5
c
11
y
8
+ 16y
7
+ ··· + 4116y + 2401
c
4
, c
7
, c
9
c
12
y
8
4y
7
+ 4y
6
+ 24y
5
+ 140y
4
+ 224y
3
+ 224y
2
+ 96y + 16
c
6
(y + 1)
8
c
8
, c
10
y
8
12y
7
+ ··· 1132y + 1681
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.250028 + 1.085420I
a = 0.548797 + 0.000925I
b = 0.618034I
2.30291 2.00000
u = 0.250028 1.085420I
a = 0.548797 0.000925I
b = 0.618034I
2.30291 2.00000
u = 1.36801 + 0.53261I
a = 0.779945 + 0.583385I
b = 0.618034I
2.30291 2.00000
u = 1.36801 0.53261I
a = 0.779945 0.583385I
b = 0.618034I
2.30291 2.00000
u = 0.11336 + 1.75843I
a = 0.543770 0.231510I
b = 1.61803I
5.59278 2.00000
u = 0.11336 1.75843I
a = 0.543770 + 0.231510I
b = 1.61803I
5.59278 2.00000
u = 0.50467 + 2.37647I
a = 0.455479 + 0.781371I
b = 1.61803I
5.59278 2.00000
u = 0.50467 2.37647I
a = 0.455479 0.781371I
b = 1.61803I
5.59278 2.00000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)(u
4
2u
3
+ u
2
+ 5)
2
· (u
6
7u
5
+ 14u
4
+ u
3
28u
2
+ 31u 11)
2
· (u
13
+ 2u
12
+ ··· + 73u + 5)
c
2
, c
11
(u
3
+ u
2
1)(u
8
+ 2u
7
+ ··· + 70u + 49)
· (u
12
+ 2u
11
+ ··· + 2u + 1)(u
13
+ 2u
12
+ ··· + 3u 1)
c
3
, c
5
(u
3
u
2
+ 1)(u
8
+ 2u
7
+ ··· + 70u + 49)
· (u
12
2u
11
+ ··· 2u + 1)(u
13
+ 2u
12
+ ··· + 3u 1)
c
4
, c
7
(u
3
+ u
2
+ 2u + 1)(u
8
2u
7
4u
5
+ 10u
4
+ 4u
3
+ 12u
2
+ 4)
· (u
12
2u
11
+ ··· + 8u + 4)(u
13
+ 10u
11
+ ··· 12u 4)
c
6
(u
2
+ 1)
4
(u
3
u
2
+ u + 1)
4
(u
3
+ 2u
2
+ 3u + 1)
· (u
13
3u
12
+ ··· + 112u 19)
c
8
, c
10
(u
3
u
2
+ 2u 1)
· (u
8
+ 2u
7
4u
6
18u
5
+ 10u
4
+ 98u
3
+ 156u
2
+ 118u + 41)
· (u
12
2u
11
+ ··· 40u + 29)(u
13
+ 2u
12
+ ··· + 5u 1)
c
9
, c
12
(u
3
u
2
+ 2u 1)(u
8
2u
7
4u
5
+ 10u
4
+ 4u
3
+ 12u
2
+ 4)
· (u
12
+ 2u
11
+ ··· 8u + 4)(u
13
+ 10u
11
+ ··· 12u 4)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)(y
4
2y
3
+ 11y
2
+ 10y + 25)
2
· (y
6
21y
5
+ 154y
4
373y
3
+ 414y
2
345y + 121)
2
· (y
13
38y
12
+ ··· + 7329y 25)
c
2
, c
3
, c
5
c
11
(y
3
y
2
+ 2y 1)(y
8
+ 16y
7
+ ··· + 4116y + 2401)
· (y
12
2y
11
+ ··· 14y + 1)(y
13
2y
12
+ ··· + 45y 1)
c
4
, c
7
, c
9
c
12
(y
3
+ 3y
2
+ 2y 1)
· (y
8
4y
7
+ 4y
6
+ 24y
5
+ 140y
4
+ 224y
3
+ 224y
2
+ 96y + 16)
· (y
12
+ 12y
11
+ ··· 256y + 16)(y
13
+ 20y
12
+ ··· + 208y 16)
c
6
(y + 1)
8
(y
3
+ y
2
+ 3y 1)
4
(y
3
+ 2y
2
+ 5y 1)
· (y
13
+ 7y
12
+ ··· + 2094y 361)
c
8
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
8
12y
7
+ ··· 1132y + 1681)
· (y
12
+ 4y
11
+ ··· 5892y + 841)(y
13
8y
12
+ ··· + 7y 1)
21