12n
0837
(K12n
0837
)
A knot diagram
1
Linearized knot diagam
4 12 11 9 8 4 3 1 12 8 7 5
Solving Sequence
5,9 1,4
2 8 6 12 10 11 3 7
c
4
c
1
c
8
c
5
c
12
c
9
c
10
c
3
c
7
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, a 1, u
4
+ 2u
3
+ 2u
2
u 1i
I
u
2
= hb + u, 9u
17
+ 40u
16
+ ··· + 2a + 19, u
18
5u
17
+ ··· 6u + 2i
I
u
3
= h5u
17
24u
16
+ ··· + 2b 18, a 1, u
18
5u
17
+ ··· 6u + 2i
I
u
4
= h−1573066898u
17
28039813504u
16
+ ··· + 6554007584b 87714720832,
2741085026u
17
47766463570u
16
+ ··· + 6554007584a 96897616096,
2u
18
+ 36u
17
+ ··· + 288u + 64i
I
u
5
= hb + u, a + 1, u
6
u
5
+ u
4
+ 2u
3
+ u + 1i
I
u
6
= hb + u, a + 1, u
4
2u
3
+ 2u
2
u + 1i
I
u
7
= hu
5
u
4
+ 3u
3
au 2u
2
+ b + u, u
4
a + u
5
+ u
3
a u
4
3u
2
a + 3u
3
+ a
2
+ 2au 3u
2
a + 2u 3,
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u + 1i
I
u
8
= h−8u
11
+ 27u
10
39u
9
+ 7u
8
+ 13u
7
+ 57u
6
222u
5
+ 307u
4
266u
3
+ 151u
2
+ 2b 61u + 14,
6u
11
+ 17u
10
19u
9
7u
8
+ 7u
7
+ 49u
6
138u
5
+ 147u
4
106u
3
+ 47u
2
+ 2a 11u,
u
12
4u
11
+ 7u
10
4u
9
u
8
6u
7
+ 32u
6
56u
5
+ 58u
4
40u
3
+ 19u
2
6u + 1i
I
u
9
= h7u
11
23u
10
+ 31u
9
u
8
13u
7
54u
6
+ 189u
5
242u
4
+ 193u
3
103u
2
+ 2b + 36u 6,
14u
11
48u
10
+ 71u
9
17u
8
21u
7
97u
6
+ 391u
5
562u
4
+ 505u
3
294u
2
+ 2a + 115u 23,
u
12
4u
11
+ 7u
10
4u
9
u
8
6u
7
+ 32u
6
56u
5
+ 58u
4
40u
3
+ 19u
2
6u + 1i
I
u
10
= hb 2u, a 2, 2u
2
2u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hb + u, 2a 1, u
2
+ 2u + 2i
I
u
12
= h2b u, a + 1, u
2
+ 2u + 2i
I
u
13
= hb + u, a 1, u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1i
I
u
14
= h−u
4
+ 3u
3
au 4u
2
+ b + u, u
5
+ u
3
a + 2u
4
3u
2
a u
3
+ a
2
+ 4au 4u
2
a + 4u 4,
u
6
3u
5
+ 5u
4
4u
3
+ 4u
2
u + 1i
I
u
15
= hb + u, u
3
u
2
+ a 1, u
4
+ u
3
+ u
2
+ u + 1i
I
u
16
= hu
2
+ b + 1, a + 1, u
4
+ u
3
+ u
2
+ u + 1i
I
u
17
= hu
3
3u
2
+ b + 3u 1, u
3
2u
2
+ a + u + 1, u
4
3u
3
+ 4u
2
2u + 1i
* 17 irreducible components of dim
C
= 0, with total 140 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hb + u, a 1, u
4
+ 2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
u
a
4
=
1
u
2
a
2
=
u
2
+ u + 1
u
3
2u
2
+ 1
a
8
=
u
u
2
+ u
a
6
=
u
3
u
2
+ 1
u
2
+ u + 1
a
12
=
u + 1
u
a
10
=
u
3
2u
2
u
u
3
+ u
2
+ u
a
11
=
u
2
u
u
3
+ 2u
2
1
a
3
=
u
3
u
2
+ 1
u
2
+ 1
a
7
=
u
3
2u
2
u + 1
u
3
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
12u
2
6u + 9
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
u
4
2u
3
+ u
2
+ 4u 1
c
3
, c
4
, c
7
c
8
, c
11
, c
12
u
4
2u
3
+ 2u
2
+ u 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
y
4
2y
3
+ 15y
2
18y + 1
c
3
, c
4
, c
7
c
8
, c
11
, c
12
y
4
+ 6y
2
5y + 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.664422
a = 1.00000
b = 0.664422
2.90924 2.04390
u = 0.591616
a = 1.00000
b = 0.591616
1.01979 9.59200
u = 1.03640 + 1.21238I
a = 1.00000
b = 1.03640 1.21238I
5.6350 19.7459I 0.77406 + 10.13367I
u = 1.03640 1.21238I
a = 1.00000
b = 1.03640 + 1.21238I
5.6350 + 19.7459I 0.77406 10.13367I
6
II. I
u
2
= hb + u, 9u
17
+ 40u
16
+ · · · + 2a + 19, u
18
5u
17
+ · · · 6u + 2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
9
2
u
17
20u
16
+ ··· +
59
2
u
19
2
u
a
4
=
1
u
2
a
2
=
5u
17
47
2
u
16
+ ··· +
73
2
u
29
2
3
2
u
17
+
13
2
u
16
+ ··· 8u + 2
a
8
=
10.2500u
17
44.7500u
16
+ ··· + 59.2500u 15.5000
1
2
u
17
7
2
u
16
+ ··· + 7u 5
a
6
=
15
4
u
17
+
67
4
u
16
+ ···
77
4
u +
7
2
u
17
4u
16
+ ···
11
2
u
2
+ 3u
a
12
=
9
2
u
17
20u
16
+ ··· +
61
2
u
19
2
u
a
10
=
9.25000u
17
37.7500u
16
+ ··· + 47.2500u 5.50000
1
2
u
17
7
2
u
16
+ ··· + 7u 5
a
11
=
4u
17
49
2
u
16
+ ··· +
99
2
u 26
7
2
u
17
+ 15u
16
+ ··· 16u + 4
a
3
=
1
2
u
17
13
2
u
16
+ ··· + 19u 16
1
2
u
17
+
5
2
u
16
+ ··· 5u + 2
a
7
=
4.75000u
17
+ 21.7500u
16
+ ··· 26.7500u + 7.50000
2u
17
15
2
u
16
+ ···
15
2
u
2
+ 5u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
17
+ 63u
16
165u
15
+ 258u
14
297u
13
+ 308u
12
454u
11
+
751u
10
1156u
9
+ 1416u
8
1411u
7
+ 1045u
6
635u
5
+ 324u
4
212u
3
+ 137u
2
92u + 24
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
18
+ 5u
17
+ ··· + 29u + 11
c
3
, c
4
, c
11
c
12
u
18
+ 5u
17
+ ··· + 6u + 2
c
6
, c
9
2(2u
18
42u
17
+ ··· 32768u + 4096)
c
7
, c
8
2(2u
18
36u
17
+ ··· 288u + 64)
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
18
7y
17
+ ··· 1171y + 121
c
3
, c
4
, c
11
c
12
y
18
+ 3y
17
+ ··· + 16y + 4
c
6
, c
9
4(4y
18
48y
17
+ ··· + 5242880y
2
+ 1.67772 × 10
7
)
c
7
, c
8
4(4y
18
36y
17
+ ··· 50176y + 4096)
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.117461 + 1.055770I
a = 0.197487 0.226554I
b = 0.117461 1.055770I
0.27448 4.94689I 1.21757 + 8.17867I
u = 0.117461 1.055770I
a = 0.197487 + 0.226554I
b = 0.117461 + 1.055770I
0.27448 + 4.94689I 1.21757 8.17867I
u = 0.685691 + 0.586681I
a = 1.71323 0.43588I
b = 0.685691 0.586681I
0.27448 + 4.94689I 1.21757 8.17867I
u = 0.685691 0.586681I
a = 1.71323 + 0.43588I
b = 0.685691 + 0.586681I
0.27448 4.94689I 1.21757 + 8.17867I
u = 0.138696 + 0.833961I
a = 0.96269 + 1.98234I
b = 0.138696 0.833961I
5.85311 8.22123I 7.71204 + 4.47530I
u = 0.138696 0.833961I
a = 0.96269 1.98234I
b = 0.138696 + 0.833961I
5.85311 + 8.22123I 7.71204 4.47530I
u = 0.944753 + 0.780899I
a = 0.410800 + 0.178193I
b = 0.944753 0.780899I
3.08112 1.34368I 2.02039 + 5.00957I
u = 0.944753 0.780899I
a = 0.410800 0.178193I
b = 0.944753 + 0.780899I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.474610 + 0.583553I
a = 0.06054 + 2.66696I
b = 0.474610 0.583553I
4.67654 + 10.79130I 3.31192 12.75342I
u = 0.474610 0.583553I
a = 0.06054 2.66696I
b = 0.474610 + 0.583553I
4.67654 10.79130I 3.31192 + 12.75342I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.105760 + 0.758854I
a = 0.702132 0.134728I
b = 1.105760 0.758854I
3.08112 1.34368I 2.02039 + 5.00957I
u = 1.105760 0.758854I
a = 0.702132 + 0.134728I
b = 1.105760 + 0.758854I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.462479 + 0.431703I
a = 1.79515 + 3.21804I
b = 0.462479 0.431703I
2.64827 6 0.557711 + 0.10I
u = 0.462479 0.431703I
a = 1.79515 3.21804I
b = 0.462479 + 0.431703I
2.64827 6 0.557711 + 0.10I
u = 0.97105 + 1.12180I
a = 1.125730 0.023180I
b = 0.97105 1.12180I
4.67654 + 10.79130I 3.31192 12.75342I
u = 0.97105 1.12180I
a = 1.125730 + 0.023180I
b = 0.97105 + 1.12180I
4.67654 10.79130I 3.31192 + 12.75342I
u = 0.97090 + 1.14798I
a = 0.952181 0.151413I
b = 0.97090 1.14798I
5.85311 + 8.22123I 7.71204 4.47530I
u = 0.97090 1.14798I
a = 0.952181 + 0.151413I
b = 0.97090 + 1.14798I
5.85311 8.22123I 7.71204 + 4.47530I
11
III. I
u
3
= h5u
17
24u
16
+ · · · + 2b 18, a 1, u
18
5u
17
+ · · · 6u + 2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
5
2
u
17
+ 12u
16
+ ···
35
2
u + 9
a
4
=
1
u
2
a
2
=
5
2
u
17
12u
16
+ ··· +
35
2
u 8
7
2
u
17
+
31
2
u
16
+ ···
39
2
u + 8
a
8
=
u
1
2
u
17
7
2
u
16
+ ··· + 7u 5
a
6
=
u
17
7
2
u
16
+ ··· + 2u + 2
u
17
4u
16
+ ···
11
2
u
2
+ 3u
a
12
=
5
2
u
17
12u
16
+ ··· +
35
2
u 8
5
2
u
17
+ 12u
16
+ ···
35
2
u + 9
a
10
=
u
16
+ 4u
15
+ ··· +
11
2
u 3
1
2
u
17
+
9
2
u
16
+ ···
23
2
u + 8
a
11
=
2u
16
+
15
2
u
15
+ ··· +
15
2
u 5
3
2
u
17
7u
16
+ ··· + 7u 1
a
3
=
2u
17
+
13
2
u
16
+ ··· u 4
u
17
4u
16
+ ··· + 3u + 1
a
7
=
u
17
9
2
u
16
+ ··· + 6u 1
u
16
7
2
u
15
+ ··· 3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
17
+ 63u
16
165u
15
+ 258u
14
297u
13
+ 308u
12
454u
11
+
751u
10
1156u
9
+ 1416u
8
1411u
7
+ 1045u
6
635u
5
+ 324u
4
212u
3
+ 137u
2
92u + 24
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
2(2u
18
42u
17
+ ··· 32768u + 4096)
c
2
, c
5
, c
6
c
9
u
18
+ 5u
17
+ ··· + 29u + 11
c
3
, c
4
, c
7
c
8
u
18
+ 5u
17
+ ··· + 6u + 2
c
11
, c
12
2(2u
18
36u
17
+ ··· 288u + 64)
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
4(4y
18
48y
17
+ ··· + 5242880y
2
+ 1.67772 × 10
7
)
c
2
, c
5
, c
6
c
9
y
18
7y
17
+ ··· 1171y + 121
c
3
, c
4
, c
7
c
8
y
18
+ 3y
17
+ ··· + 16y + 4
c
11
, c
12
4(4y
18
36y
17
+ ··· 50176y + 4096)
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.117461 + 1.055770I
a = 1.00000
b = 0.262386 + 0.181889I
0.27448 4.94689I 1.21757 + 8.17867I
u = 0.117461 1.055770I
a = 1.00000
b = 0.262386 0.181889I
0.27448 + 4.94689I 1.21757 8.17867I
u = 0.685691 + 0.586681I
a = 1.00000
b = 0.91902 + 1.30400I
0.27448 + 4.94689I 1.21757 8.17867I
u = 0.685691 0.586681I
a = 1.00000
b = 0.91902 1.30400I
0.27448 4.94689I 1.21757 + 8.17867I
u = 0.138696 + 0.833961I
a = 1.00000
b = 1.51967 1.07779I
5.85311 8.22123I 7.71204 + 4.47530I
u = 0.138696 0.833961I
a = 1.00000
b = 1.51967 + 1.07779I
5.85311 + 8.22123I 7.71204 4.47530I
u = 0.944753 + 0.780899I
a = 1.00000
b = 0.527255 + 0.152445I
3.08112 1.34368I 2.02039 + 5.00957I
u = 0.944753 0.780899I
a = 1.00000
b = 0.527255 0.152445I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.474610 + 0.583553I
a = 1.00000
b = 1.58505 1.23044I
4.67654 + 10.79130I 3.31192 12.75342I
u = 0.474610 0.583553I
a = 1.00000
b = 1.58505 + 1.23044I
4.67654 10.79130I 3.31192 + 12.75342I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.105760 + 0.758854I
a = 1.00000
b = 0.674150 0.681792I
3.08112 1.34368I 2.02039 + 5.00957I
u = 1.105760 0.758854I
a = 1.00000
b = 0.674150 + 0.681792I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.462479 + 0.431703I
a = 1.00000
b = 2.21945 + 0.71331I
2.64827 6 0.557711 + 0.10I
u = 0.462479 0.431703I
a = 1.00000
b = 2.21945 0.71331I
2.64827 6 0.557711 + 0.10I
u = 0.97105 + 1.12180I
a = 1.00000
b = 1.06713 + 1.28535I
4.67654 + 10.79130I 3.31192 12.75342I
u = 0.97105 1.12180I
a = 1.00000
b = 1.06713 1.28535I
4.67654 10.79130I 3.31192 + 12.75342I
u = 0.97090 + 1.14798I
a = 1.00000
b = 0.75065 + 1.24009I
5.85311 + 8.22123I 7.71204 4.47530I
u = 0.97090 1.14798I
a = 1.00000
b = 0.75065 1.24009I
5.85311 8.22123I 7.71204 + 4.47530I
16
IV. I
u
4
=
h−1.57×10
9
u
17
2.80×10
10
u
16
+· · ·+6.55×10
9
b8.77×10
10
, 2.74×10
9
u
17
4.78 × 10
10
u
16
+ · · · + 6.55 × 10
9
a 9.69 × 10
10
, 2u
18
+ 36u
17
+ · · · + 288u + 64i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
0.418230u
17
+ 7.28813u
16
+ ··· + 55.0668u + 14.7845
0.240016u
17
+ 4.27827u
16
+ ··· + 45.4407u + 13.3834
a
4
=
1
u
2
a
2
=
0.220233u
17
+ 3.85283u
16
+ ··· + 30.8051u + 9.08162
0.279696u
17
+ 4.70292u
16
+ ··· + 33.2504u + 9.26644
a
8
=
0.405049u
17
7.06890u
16
+ ··· 66.2576u 23.6467
0.221980u
17
3.87748u
16
+ ··· 33.6803u 12.9616
a
6
=
0.0814254u
17
1.40331u
16
+ ··· 6.57667u 8.03340
0.0558069u
17
+ 1.04276u
16
+ ··· + 16.3117u + 4.49774
a
12
=
0.178214u
17
+ 3.00986u
16
+ ··· + 9.62612u + 1.40111
0.240016u
17
+ 4.27827u
16
+ ··· + 45.4407u + 13.3834
a
10
=
0.0792438u
17
1.38641u
16
+ ··· 15.9005u 4.82694
0.103825u
17
1.80501u
16
+ ··· 14.6768u 5.85821
a
11
=
0.669793u
17
11.6921u
16
+ ··· 106.612u 38.3152
0.305026u
17
5.38385u
16
+ ··· 51.3580u 20.0086
a
3
=
0.407230u
17
+ 7.09082u
16
+ ··· + 65.9981u + 22.7461
0.463276u
17
+ 7.95175u
16
+ ··· + 61.0907u + 21.1249
a
7
=
0.229775u
17
3.95065u
16
+ ··· 29.2608u 14.5263
0.0526146u
17
0.945653u
16
+ ··· + 3.35320u + 0.563147
(ii) Obstruction class = 1
(iii) Cusp Shapes =
867904991
819250948
u
17
7549831247
409625474
u
16
+ ···
35978777006
204812737
u
12280937430
204812737
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
9
c
10
u
18
+ 5u
17
+ ··· + 29u + 11
c
2
, c
5
2(2u
18
42u
17
+ ··· 32768u + 4096)
c
3
, c
4
2(2u
18
36u
17
+ ··· 288u + 64)
c
7
, c
8
, c
11
c
12
u
18
+ 5u
17
+ ··· + 6u + 2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
y
18
7y
17
+ ··· 1171y + 121
c
2
, c
5
4(4y
18
48y
17
+ ··· + 5242880y
2
+ 1.67772 × 10
7
)
c
3
, c
4
4(4y
18
36y
17
+ ··· 50176y + 4096)
c
7
, c
8
, c
11
c
12
y
18
+ 3y
17
+ ··· + 16y + 4
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.674150 + 0.681792I
a = 1.373660 + 0.263583I
b = 1.105760 0.758854I
3.08112 1.34368I 2.02039 + 5.00957I
u = 0.674150 0.681792I
a = 1.373660 0.263583I
b = 1.105760 + 0.758854I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.75065 + 1.24009I
a = 1.024320 0.162884I
b = 0.97090 + 1.14798I
5.85311 8.22123I 7.71204 + 4.47530I
u = 0.75065 1.24009I
a = 1.024320 + 0.162884I
b = 0.97090 1.14798I
5.85311 + 8.22123I 7.71204 4.47530I
u = 0.527255 + 0.152445I
a = 2.04878 + 0.88870I
b = 0.944753 + 0.780899I
3.08112 + 1.34368I 2.02039 5.00957I
u = 0.527255 0.152445I
a = 2.04878 0.88870I
b = 0.944753 0.780899I
3.08112 1.34368I 2.02039 + 5.00957I
u = 0.91902 + 1.30400I
a = 0.548208 0.139474I
b = 0.685691 + 0.586681I
0.27448 4.94689I 1.21757 + 8.17867I
u = 0.91902 1.30400I
a = 0.548208 + 0.139474I
b = 0.685691 0.586681I
0.27448 + 4.94689I 1.21757 8.17867I
u = 1.06713 + 1.28535I
a = 0.887939 0.018284I
b = 0.97105 + 1.12180I
4.67654 10.79130I 3.31192 + 12.75342I
u = 1.06713 1.28535I
a = 0.887939 + 0.018284I
b = 0.97105 1.12180I
4.67654 + 10.79130I 3.31192 12.75342I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.262386 + 0.181889I
a = 2.18634 2.50813I
b = 0.117461 + 1.055770I
0.27448 + 4.94689I 1.21757 8.17867I
u = 0.262386 0.181889I
a = 2.18634 + 2.50813I
b = 0.117461 1.055770I
0.27448 4.94689I 1.21757 + 8.17867I
u = 1.51967 + 1.07779I
a = 0.198230 0.408188I
b = 0.138696 0.833961I
5.85311 8.22123I 7.71204 + 4.47530I
u = 1.51967 1.07779I
a = 0.198230 + 0.408188I
b = 0.138696 + 0.833961I
5.85311 + 8.22123I 7.71204 4.47530I
u = 1.58505 + 1.23044I
a = 0.008508 0.374766I
b = 0.474610 0.583553I
4.67654 + 10.79130I 3.31192 12.75342I
u = 1.58505 1.23044I
a = 0.008508 + 0.374766I
b = 0.474610 + 0.583553I
4.67654 10.79130I 3.31192 + 12.75342I
u = 2.21945 + 0.71331I
a = 0.132207 + 0.236998I
b = 0.462479 + 0.431703I
2.64827 0
u = 2.21945 0.71331I
a = 0.132207 0.236998I
b = 0.462479 0.431703I
2.64827 0
21
V. I
u
5
= hb + u, a + 1, u
6
u
5
+ u
4
+ 2u
3
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
u
a
4
=
1
u
2
a
2
=
u
2
+ u 1
u
4
+ u
3
u
a
8
=
u
u
2
+ u
a
6
=
u
3
u
2
+ 1
u
4
2u
3
+ u
2
a
12
=
u 1
u
a
10
=
u
3
+ 2u
2
u
u
3
u
2
+ u
a
11
=
u
5
u
4
+ u
3
+ 2u
2
+ 1
u
5
+ 2u
4
3u
3
2
a
3
=
2u
5
+ 3u
4
4u
3
u
2
2
u
5
2u
4
+ 3u
3
+ 1
a
7
=
u
5
2u
4
+ 3u
3
u
2
+ 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ 6u
4
12u
3
+ 3u
2
3u 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
9
u
6
2u
5
u
4
+ 7u
3
2u
2
7u + 5
c
2
, c
6
, c
10
u
6
+ 2u
5
u
4
7u
3
2u
2
+ 7u + 5
c
3
, c
7
, c
11
u
6
+ u
5
+ u
4
2u
3
u + 1
c
4
, c
8
, c
12
u
6
u
5
+ u
4
+ 2u
3
+ u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
y
6
6y
5
+ 25y
4
63y
3
+ 92y
2
69y + 25
c
3
, c
4
, c
7
c
8
, c
11
, c
12
y
6
+ y
5
+ 5y
4
2y
2
y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.284920 + 0.820791I
a = 1.00000
b = 0.284920 0.820791I
3.96484 8.68367 + 0.I
u = 0.284920 0.820791I
a = 1.00000
b = 0.284920 + 0.820791I
3.96484 8.68367 + 0.I
u = 0.747005 + 0.135499I
a = 1.00000
b = 0.747005 0.135499I
4.59731 + 9.42707I 1.65816 5.60826I
u = 0.747005 0.135499I
a = 1.00000
b = 0.747005 + 0.135499I
4.59731 9.42707I 1.65816 + 5.60826I
u = 0.96209 + 1.17164I
a = 1.00000
b = 0.96209 1.17164I
4.59731 + 9.42707I 1.65816 5.60826I
u = 0.96209 1.17164I
a = 1.00000
b = 0.96209 + 1.17164I
4.59731 9.42707I 1.65816 + 5.60826I
25
VI. I
u
6
= hb + u, a + 1, u
4
2u
3
+ 2u
2
u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
u
a
4
=
1
u
2
a
2
=
u
2
+ u 1
u
3
+ 2u
2
2u + 1
a
8
=
u
u
2
+ u
a
6
=
u
3
u
2
+ 1
u
2
+ u 1
a
12
=
u 1
u
a
10
=
u
3
+ 2u
2
u
u
3
u
2
+ u
a
11
=
2u
3
+ 3u
2
u
u
3
+ 1
a
3
=
u
3
3u
2
+ 2u 1
2u
3
+ 3u
2
2u + 1
a
7
=
u
3
u + 1
u
3
3u
2
+ 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
+ 6u 3
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
9
(u
2
u + 1)
2
c
2
, c
6
, c
10
(u
2
+ u + 1)
2
c
3
, c
7
, c
11
u
4
+ 2u
3
+ 2u
2
+ u + 1
c
4
, c
8
, c
12
u
4
2u
3
+ 2u
2
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
(y
2
+ y + 1)
2
c
3
, c
4
, c
7
c
8
, c
11
, c
12
y
4
+ 2y
2
+ 3y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.070696 + 0.758745I
a = 1.00000
b = 0.070696 0.758745I
1.74699 3.49426I 4.15464 + 7.10504I
u = 0.070696 0.758745I
a = 1.00000
b = 0.070696 + 0.758745I
1.74699 + 3.49426I 4.15464 7.10504I
u = 1.070700 + 0.758745I
a = 1.00000
b = 1.070700 0.758745I
5.03685 + 8.68504I 7.15464 8.48342I
u = 1.070700 0.758745I
a = 1.00000
b = 1.070700 + 0.758745I
5.03685 8.68504I 7.15464 + 8.48342I
29
VII. I
u
7
= hu
5
u
4
+ 3u
3
au 2u
2
+ b + u, u
4
a + u
5
+ · · · a 3, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
a
u
5
+ u
4
3u
3
+ au + 2u
2
u
a
4
=
1
u
2
a
2
=
u
5
u
4
+ u
2
a + 3u
3
au 2u
2
+ a + u
u
4
a u
5
u
3
a + u
4
4u
3
+ au + 3u
2
2u
a
8
=
u
5
a + u
4
a 3u
3
a + 2u
2
a u
3
au 2u 1
u
4
2u
2
a
6
=
u
5
a + u
4
a + 2u
5
3u
3
a + 2u
2
a + 4u
3
2au + u
2
u
5
2u
4
+ 3u
3
4u
2
+ u 2
a
12
=
u
5
u
4
+ 3u
3
au 2u
2
+ a + u
u
5
+ u
4
3u
3
+ au + 2u
2
u
a
10
=
u
5
a + u
4
a 4u
3
a + u
4
+ 3u
2
a u
3
2au + 3u
2
u
u
3
a u
2
a + au u
2
+ u 1
a
11
=
u
5
a + u
5
2u
3
a u
4
+ 3u
3
+ au 2u
2
+ 2u 2
u
4
a + u
3
a + u
2
a u
2
+ a
a
3
=
u
5
a + u
4
a 2u
3
a + 3u
2
a au + a u
u
5
a + u
4
a + u
3
a u
3
+ au + u
2
a
7
=
u
5
a + u
4
a + u
5
3u
3
a + u
4
+ u
2
a + u
3
au + 3u
2
u
u
4
a + u
5
+ u
3
a 2u
4
+ 4u
3
5u
2
+ 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
5
20u
3
8u
2
6
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
9
c
10
u
12
+ 4u
11
+ ··· + 4u + 1
c
2
, c
5
(u
6
+ 3u
5
+ 7u
4
+ 10u
3
+ 10u
2
+ 7u + 3)
2
c
3
, c
4
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
c
7
, c
8
, c
11
c
12
u
12
+ 4u
11
+ ··· + 6u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
y
12
10y
11
+ ··· 14y + 1
c
2
, c
5
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
+ 2y
2
+ 11y + 9)
2
c
3
, c
4
(y
6
+ 5y
5
+ 9y
4
+ 8y
3
+ 6y
2
+ 3y + 1)
2
c
7
, c
8
, c
11
c
12
y
12
2y
11
+ ··· + 2y + 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.616765 + 0.580357I
a = 1.57092 + 0.24410I
b = 1.30393 + 0.83343I
2.18727 + 7.89459I 4.23219 13.00098I
u = 0.616765 + 0.580357I
a = 1.79571 + 0.33842I
b = 0.827224 1.062250I
2.18727 + 7.89459I 4.23219 13.00098I
u = 0.616765 0.580357I
a = 1.57092 0.24410I
b = 1.30393 0.83343I
2.18727 7.89459I 4.23219 + 13.00098I
u = 0.616765 0.580357I
a = 1.79571 0.33842I
b = 0.827224 + 1.062250I
2.18727 7.89459I 4.23219 + 13.00098I
u = 0.291649 + 0.757555I
a = 0.923318 0.267732I
b = 1.26214 1.01347I
3.90376 2.86500I 8.91554 + 9.10702I
u = 0.291649 + 0.757555I
a = 0.60651 1.89957I
b = 0.472106 + 0.621380I
3.90376 2.86500I 8.91554 + 9.10702I
u = 0.291649 0.757555I
a = 0.923318 + 0.267732I
b = 1.26214 + 1.01347I
3.90376 + 2.86500I 8.91554 9.10702I
u = 0.291649 0.757555I
a = 0.60651 + 1.89957I
b = 0.472106 0.621380I
3.90376 + 2.86500I 8.91554 9.10702I
u = 0.17488 + 1.44407I
a = 0.077332 0.438982I
b = 0.122069 + 0.573149I
3.21831 0.69024I 2.68334 + 10.61298I
u = 0.17488 + 1.44407I
a = 0.381072 0.130681I
b = 0.620396 + 0.188443I
3.21831 0.69024I 2.68334 + 10.61298I
33
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.17488 1.44407I
a = 0.077332 + 0.438982I
b = 0.122069 0.573149I
3.21831 + 0.69024I 2.68334 10.61298I
u = 0.17488 1.44407I
a = 0.381072 + 0.130681I
b = 0.620396 0.188443I
3.21831 + 0.69024I 2.68334 10.61298I
34
VIII. I
u
8
= h−8u
11
+ 27u
10
+ · · · + 2b + 14, 6u
11
+ 17u
10
+ · · · + 2a
11u, u
12
4u
11
+ · · · 6u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
3u
11
17
2
u
10
+ ···
47
2
u
2
+
11
2
u
4u
11
27
2
u
10
+ ··· +
61
2
u 7
a
4
=
1
u
2
a
2
=
3
2
u
11
4u
10
+ ··· 7u +
7
2
5
2
u
11
17
2
u
10
+ ··· + 23u
11
2
a
8
=
1
2
u
11
9
2
u
10
+ ··· + 16u 3
5
2
u
11
+
19
2
u
10
+ ···
41
2
u + 5
a
6
=
4u
11
+ 16u
10
+ ··· 41u +
19
2
u
11
+
9
2
u
10
+ ···
33
2
u + 5
a
12
=
u
11
+ 5u
10
+ ··· 25u + 7
4u
11
27
2
u
10
+ ··· +
61
2
u 7
a
10
=
6u
11
24u
10
+ ··· + 56u 12
3u
11
+ 10u
10
+ ···
35
2
u + 4
a
11
=
3u
11
11u
10
+ ··· +
49
2
u 6
3u
11
10u
10
+ ··· + 21u 4
a
3
=
15
2
u
11
28u
10
+ ··· + 49u
17
2
1
2
u
11
+
3
2
u
10
+ ··· +
9
2
u
3
2
a
7
=
3
2
u
11
+
13
2
u
10
+ ···
41
2
u +
9
2
2u
11
+ 7u
10
+ ··· 16u +
9
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 42u
11
+ 148u
10
218u
9
+ 46u
8
+ 84u
7
+ 300u
6
1216u
5
+
1720u
4
1468u
3
+ 822u
2
320u + 70
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
6
+ 3u
5
+ 7u
4
+ 10u
3
+ 10u
2
+ 7u + 3)
2
c
2
, c
5
, c
6
c
9
u
12
+ 4u
11
+ ··· + 4u + 1
c
3
, c
4
, c
7
c
8
u
12
+ 4u
11
+ ··· + 6u + 1
c
11
, c
12
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
+ 2y
2
+ 11y + 9)
2
c
2
, c
5
, c
6
c
9
y
12
10y
11
+ ··· 14y + 1
c
3
, c
4
, c
7
c
8
y
12
2y
11
+ ··· + 2y + 1
c
11
, c
12
(y
6
+ 5y
5
+ 9y
4
+ 8y
3
+ 6y
2
+ 3y + 1)
2
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.472106 + 0.621380I
a = 0.05564 2.07346I
b = 0.291649 + 0.757555I
3.90376 + 2.86500I 8.91554 9.10702I
u = 0.472106 0.621380I
a = 0.05564 + 2.07346I
b = 0.291649 0.757555I
3.90376 2.86500I 8.91554 + 9.10702I
u = 0.827224 + 1.062250I
a = 1.083450 + 0.383784I
b = 0.616765 0.580357I
2.18727 + 7.89459I 4.23219 13.00098I
u = 0.827224 1.062250I
a = 1.083450 0.383784I
b = 0.616765 + 0.580357I
2.18727 7.89459I 4.23219 + 13.00098I
u = 0.620396 + 0.188443I
a = 0.437050 + 0.791090I
b = 0.17488 + 1.44407I
3.21831 + 0.69024I 2.68334 10.61298I
u = 0.620396 0.188443I
a = 0.437050 0.791090I
b = 0.17488 1.44407I
3.21831 0.69024I 2.68334 + 10.61298I
u = 0.122069 + 0.573149I
a = 0.535052 0.968480I
b = 0.17488 + 1.44407I
3.21831 + 0.69024I 2.68334 10.61298I
u = 0.122069 0.573149I
a = 0.535052 + 0.968480I
b = 0.17488 1.44407I
3.21831 0.69024I 2.68334 + 10.61298I
u = 1.30393 + 0.83343I
a = 0.820076 + 0.290489I
b = 0.616765 + 0.580357I
2.18727 7.89459I 4.23219 + 13.00098I
u = 1.30393 0.83343I
a = 0.820076 0.290489I
b = 0.616765 0.580357I
2.18727 + 7.89459I 4.23219 13.00098I
38
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.26214 + 1.01347I
a = 0.012932 0.481939I
b = 0.291649 0.757555I
3.90376 2.86500I 8.91554 + 9.10702I
u = 1.26214 1.01347I
a = 0.012932 + 0.481939I
b = 0.291649 + 0.757555I
3.90376 + 2.86500I 8.91554 9.10702I
39
IX. I
u
9
=
h7u
11
23u
10
+· · ·+2b6, 14u
11
48u
10
+· · ·+2a23, u
12
4u
11
+· · ·6u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
7u
11
+ 24u
10
+ ···
115
2
u +
23
2
7
2
u
11
+
23
2
u
10
+ ··· 18u + 3
a
4
=
1
u
2
a
2
=
6u
11
+ 21u
10
+ ···
113
2
u +
25
2
7
2
u
11
+
21
2
u
10
+ ··· 13u + 2
a
8
=
3u
11
+ 11u
10
+ ···
63
2
u + 10
5
2
u
11
+
19
2
u
10
+ ···
41
2
u + 5
a
6
=
5u
11
+
37
2
u
10
+ ···
105
2
u +
31
2
u
11
+
9
2
u
10
+ ···
33
2
u + 5
a
12
=
7
2
u
11
+
25
2
u
10
+ ···
79
2
u +
17
2
7
2
u
11
+
23
2
u
10
+ ··· 18u + 3
a
10
=
3
2
u
11
+ 4u
10
+ ··· 4u +
5
2
u
11
5
2
u
10
+ ··· 5u +
5
2
a
11
=
7
2
u
11
29
2
u
10
+ ··· +
97
2
u 12
2u
11
7u
10
+ ··· +
23
2
u
5
2
a
3
=
4u
11
+
23
2
u
10
+ ··· 15u + 4
3
2
u
11
+ 7u
10
+ ··· 23u + 5
a
7
=
7
2
u
11
+ 14u
10
+ ··· 40u + 12
1
2
u
11
1
2
u
10
+ ··· 9u +
7
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 42u
11
+ 148u
10
218u
9
+ 46u
8
+ 84u
7
+ 300u
6
1216u
5
+
1720u
4
1468u
3
+ 822u
2
320u + 70
40
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
12
+ 4u
11
+ ··· + 4u + 1
c
3
, c
4
, c
11
c
12
u
12
+ 4u
11
+ ··· + 6u + 1
c
6
, c
9
(u
6
+ 3u
5
+ 7u
4
+ 10u
3
+ 10u
2
+ 7u + 3)
2
c
7
, c
8
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
41
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
12
10y
11
+ ··· 14y + 1
c
3
, c
4
, c
11
c
12
y
12
2y
11
+ ··· + 2y + 1
c
6
, c
9
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
+ 2y
2
+ 11y + 9)
2
c
7
, c
8
(y
6
+ 5y
5
+ 9y
4
+ 8y
3
+ 6y
2
+ 3y + 1)
2
42
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.472106 + 0.621380I
a = 0.999050 0.289692I
b = 1.26214 + 1.01347I
3.90376 + 2.86500I 8.91554 9.10702I
u = 0.472106 0.621380I
a = 0.999050 + 0.289692I
b = 1.26214 1.01347I
3.90376 2.86500I 8.91554 + 9.10702I
u = 0.827224 + 1.062250I
a = 0.621560 0.096583I
b = 1.30393 + 0.83343I
2.18727 + 7.89459I 4.23219 13.00098I
u = 0.827224 1.062250I
a = 0.621560 + 0.096583I
b = 1.30393 0.83343I
2.18727 7.89459I 4.23219 + 13.00098I
u = 0.620396 + 0.188443I
a = 0.38922 2.20943I
b = 0.122069 0.573149I
3.21831 + 0.69024I 2.68334 10.61298I
u = 0.620396 0.188443I
a = 0.38922 + 2.20943I
b = 0.122069 + 0.573149I
3.21831 0.69024I 2.68334 + 10.61298I
u = 0.122069 + 0.573149I
a = 2.34804 0.80521I
b = 0.620396 0.188443I
3.21831 + 0.69024I 2.68334 10.61298I
u = 0.122069 0.573149I
a = 2.34804 + 0.80521I
b = 0.620396 + 0.188443I
3.21831 0.69024I 2.68334 + 10.61298I
u = 1.30393 + 0.83343I
a = 0.537783 + 0.101351I
b = 0.827224 + 1.062250I
2.18727 7.89459I 4.23219 + 13.00098I
u = 1.30393 0.83343I
a = 0.537783 0.101351I
b = 0.827224 1.062250I
2.18727 + 7.89459I 4.23219 13.00098I
43
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.26214 + 1.01347I
a = 0.152534 + 0.477734I
b = 0.472106 + 0.621380I
3.90376 2.86500I 8.91554 + 9.10702I
u = 1.26214 1.01347I
a = 0.152534 0.477734I
b = 0.472106 0.621380I
3.90376 + 2.86500I 8.91554 9.10702I
44
X. I
u
10
= hb 2u, a 2, 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
2
2u
a
4
=
1
u
1
2
a
2
=
1
u +
1
2
a
8
=
4u
3u + 2
a
6
=
4u 5
3u
1
2
a
12
=
2u + 2
2u
a
10
=
2u 2
u
a
11
=
2u 2
4u + 2
a
3
=
4u
3u
5
2
a
7
=
4u 4
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
(u + 1)
2
c
2
2(2u
2
+ 2u + 5)
c
3
2(2u
2
+ 2u + 1)
c
4
2(2u
2
2u + 1)
c
5
2(2u
2
2u + 5)
c
6
, c
10
(u 1)
2
c
7
, c
11
u
2
2u + 2
c
8
, c
12
u
2
+ 2u + 2
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
(y 1)
2
c
2
, c
5
4(4y
2
+ 16y + 25)
c
3
, c
4
4(4y
2
+ 1)
c
7
, c
8
, c
11
c
12
y
2
+ 4
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.500000I
a = 2.00000
b = 1.00000 + 1.00000I
1.64493 + 7.32772I 4.50000 4.50000I
u = 0.500000 0.500000I
a = 2.00000
b = 1.00000 1.00000I
1.64493 7.32772I 4.50000 + 4.50000I
48
XI. I
u
11
= hb + u, 2a 1, u
2
+ 2u + 2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
0.5
u
a
4
=
1
2u 2
a
2
=
0.5
u + 2
a
8
=
1
4
u
1
a
6
=
1
4
u + 1
1
a
12
=
u +
1
2
u
a
10
=
1
4
u 2
2u + 3
a
11
=
1
2
u 2
2u + 2
a
3
=
u
2
a
7
=
5
4
u 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9
2
u
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u + 1)
2
c
2
, c
10
(u 1)
2
c
3
, c
11
u
2
2u + 2
c
4
, c
12
u
2
+ 2u + 2
c
6
2(2u
2
+ 2u + 5)
c
7
2(2u
2
+ 2u + 1)
c
8
2(2u
2
2u + 1)
c
9
2(2u
2
2u + 5)
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
(y 1)
2
c
3
, c
4
, c
11
c
12
y
2
+ 4
c
6
, c
9
4(4y
2
+ 16y + 25)
c
7
, c
8
4(4y
2
+ 1)
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.00000 + 1.00000I
a = 0.500000
b = 1.00000 1.00000I
1.64493 7.32772I 4.50000 + 4.50000I
u = 1.00000 1.00000I
a = 0.500000
b = 1.00000 + 1.00000I
1.64493 + 7.32772I 4.50000 4.50000I
52
XII. I
u
12
= h2b u, a + 1, u
2
+ 2u + 2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
1
2
u
a
4
=
1
2u 2
a
2
=
3
2
u + 1
1
2
u + 2
a
8
=
u
1
a
6
=
u + 1
1
a
12
=
1
2
u 1
1
2
u
a
10
=
1
2
u + 1
1
2
u
a
11
=
1
2
u 2
2u + 2
a
3
=
u
2
a
7
=
u + 2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9
2
u
53
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
2(2u
2
2u + 5)
c
2
, c
6
(u 1)
2
c
3
, c
7
u
2
2u + 2
c
4
, c
8
u
2
+ 2u + 2
c
5
, c
9
(u + 1)
2
c
10
2(2u
2
+ 2u + 5)
c
11
2(2u
2
+ 2u + 1)
c
12
2(2u
2
2u + 1)
54
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
4(4y
2
+ 16y + 25)
c
2
, c
5
, c
6
c
9
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
+ 4
c
11
, c
12
4(4y
2
+ 1)
55
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 1.00000 + 1.00000I
a = 1.00000
b = 0.500000 + 0.500000I
1.64493 7.32772I 4.50000 + 4.50000I
u = 1.00000 1.00000I
a = 1.00000
b = 0.500000 0.500000I
1.64493 + 7.32772I 4.50000 4.50000I
56
XIII. I
u
13
= hb + u, a 1, u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
u
a
4
=
1
u
2
a
2
=
u
2
+ u + 1
u
4
+ u
3
u
a
8
=
u
u
2
+ u
a
6
=
u
3
u
2
+ 1
u
4
+ 2u
3
+ u
2
a
12
=
u + 1
u
a
10
=
u
3
2u
2
u
u
3
+ u
2
+ u
a
11
=
u
5
3u
4
5u
3
4u
2
2u 1
u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ 2u
a
3
=
u
4
+ 2u
3
+ 3u
2
+ 2u + 2
u
5
2u
4
3u
3
2u
2
2u 1
a
7
=
u
5
2u
4
3u
3
u
2
+ 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ 6u
4
+ 6u
3
+ 3u
2
+ 3u + 6
57
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
u
6
4u
5
+ 7u
4
7u
3
+ 6u
2
3u + 1
c
3
, c
4
, c
7
c
8
, c
11
, c
12
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
58
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
y
6
2y
5
+ 5y
4
+ 13y
3
+ 8y
2
+ 3y + 1
c
3
, c
4
, c
7
c
8
, c
11
, c
12
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
59
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 0.917045 + 0.592379I
a = 1.00000
b = 0.917045 0.592379I
2.21137 1.58317I 4.72185 + 1.10697I
u = 0.917045 0.592379I
a = 1.00000
b = 0.917045 + 0.592379I
2.21137 + 1.58317I 4.72185 1.10697I
u = 0.258209 + 0.569162I
a = 1.00000
b = 0.258209 0.569162I
2.21137 1.58317I 4.72185 + 1.10697I
u = 0.258209 0.569162I
a = 1.00000
b = 0.258209 + 0.569162I
2.21137 + 1.58317I 4.72185 1.10697I
u = 0.84116 + 1.20014I
a = 1.00000
b = 0.84116 1.20014I
7.71260 3.44370 + 0.I
u = 0.84116 1.20014I
a = 1.00000
b = 0.84116 + 1.20014I
7.71260 3.44370 + 0.I
60
XIV. I
u
14
= h−u
4
+ 3u
3
au 4u
2
+ b + u, u
5
+ 2u
4
+ · · · a 4, u
6
3u
5
+ 5u
4
4u
3
+ 4u
2
u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
a
u
4
3u
3
+ au + 4u
2
u
a
4
=
1
u
2
a
2
=
u
4
+ u
2
a + 3u
3
au 4u
2
+ a + u
u
4
a u
3
a + 2u
4
6u
3
+ au + 8u
2
2u + 1
a
8
=
u
4
a u
5
3u
3
a + 4u
4
+ 4u
2
a 8u
3
au + 8u
2
5u + 1
u
5
3u
4
+ 4u
3
u
2
+ u + 1
a
6
=
2u
5
a 3u
5
+ ··· 2a + 1
2u
2
u + 2
a
12
=
u
4
+ 3u
3
au 4u
2
+ a + u
u
4
3u
3
+ au + 4u
2
u
a
10
=
2u
4
a 6u
3
a + 2u
4
+ 8u
2
a 6u
3
2au + 8u
2
+ a 2u
u
4
a 2u
5
+ 3u
3
a + 5u
4
4u
2
a 6u
3
+ au + u
2
a 2u
a
11
=
u
5
a 2u
4
a + 2u
5
+ u
3
a 4u
4
+ 3u
2
a + 3u
3
au + 4u
2
+ 2a u + 3
u
5
a + 2u
4
a 2u
5
u
3
a + 6u
4
u
2
a 8u
3
+ 3u
2
a 3u
a
3
=
u
5
a 3u
4
a + 2u
5
+ 4u
3
a 6u
4
u
2
a + 8u
3
+ au 3u
2
a + 2u 1
u
5
a + 3u
4
a 2u
5
3u
3
a + 7u
4
11u
3
au + 7u
2
3u + 2
a
7
=
u
5
a 2u
5
+ ··· a 1
u
4
a + u
3
a 2u
2
a + u
2
a 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
61
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
(u
6
+ 5u
5
+ 9u
4
+ 2u
3
8u
2
3u + 3)
2
c
3
, c
4
, c
7
c
8
, c
11
, c
12
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 4u
2
+ u + 1)
2
62
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
(y
6
7y
5
+ 45y
4
112y
3
+ 130y
2
57y + 9)
2
c
3
, c
4
, c
7
c
8
, c
11
, c
12
(y
6
+ y
5
+ 9y
4
+ 20y
3
+ 18y
2
+ 7y + 1)
2
63
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
14
1(vol +
1CS) Cusp shape
u = 0.211259 + 0.877801I
a = 0.689616 0.078152I
b = 1.36583 + 1.12197I
4.93480 18.0000
u = 0.211259 + 0.877801I
a = 0.85421 1.76155I
b = 0.077086 + 0.621856I
4.93480 18.0000
u = 0.211259 0.877801I
a = 0.689616 + 0.078152I
b = 1.36583 1.12197I
4.93480 18.0000
u = 0.211259 0.877801I
a = 0.85421 + 1.76155I
b = 0.077086 0.621856I
4.93480 18.0000
u = 0.077086 + 0.621856I
a = 1.43169 0.16225I
b = 1.36583 1.12197I
4.93480 18.0000
u = 0.077086 + 0.621856I
a = 1.50878 2.38340I
b = 0.211259 + 0.877801I
4.93480 18.0000
u = 0.077086 0.621856I
a = 1.43169 + 0.16225I
b = 1.36583 + 1.12197I
4.93480 18.0000
u = 0.077086 0.621856I
a = 1.50878 + 2.38340I
b = 0.211259 0.877801I
4.93480 18.0000
u = 1.36583 + 1.12197I
a = 0.222873 0.459607I
b = 0.077086 0.621856I
4.93480 18.0000
u = 1.36583 + 1.12197I
a = 0.189616 + 0.299534I
b = 0.211259 + 0.877801I
4.93480 18.0000
64
Solutions to I
u
14
1(vol +
1CS) Cusp shape
u = 1.36583 1.12197I
a = 0.222873 + 0.459607I
b = 0.077086 + 0.621856I
4.93480 18.0000
u = 1.36583 1.12197I
a = 0.189616 0.299534I
b = 0.211259 0.877801I
4.93480 18.0000
65
XV. I
u
15
= hb + u, u
3
u
2
+ a 1, u
4
+ u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
u
3
+ u
2
+ 1
u
a
4
=
1
u
2
a
2
=
u
2
+ 1
u 1
a
8
=
u
2
u + 1
u
3
a
6
=
2u
3
u
2
u 1
u
a
12
=
u
3
+ u
2
+ u + 1
u
a
10
=
u
3
+ u
2
+ u + 1
0
a
11
=
u
3
+ u
2
1
a
3
=
u
2
u + 1
u
3
u 1
a
7
=
2u
3
u
2
u 2
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
3
+ 7u
2
+ 3
66
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
11
u
4
u
3
+ u
2
u + 1
c
2
, c
4
, c
10
c
12
u
4
+ u
3
+ u
2
+ u + 1
c
6
(u + 1)
4
c
7
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
c
8
u
4
3u
3
+ 4u
2
2u + 1
c
9
(u 1)
4
67
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
10
c
11
, c
12
y
4
+ y
3
+ y
2
+ y + 1
c
6
, c
9
(y 1)
4
c
7
, c
8
y
4
y
3
+ 6y
2
+ 4y + 1
68
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
15
1(vol +
1CS) Cusp shape
u = 0.309017 + 0.951057I
a = 0.618034
b = 0.309017 0.951057I
3.94784 8.32624 + 0.I
u = 0.309017 0.951057I
a = 0.618034
b = 0.309017 + 0.951057I
3.94784 8.32624 + 0.I
u = 0.809017 + 0.587785I
a = 1.61803
b = 0.809017 0.587785I
3.94784 7.32624 + 0.I
u = 0.809017 0.587785I
a = 1.61803
b = 0.809017 + 0.587785I
3.94784 7.32624 + 0.I
69
XVI. I
u
16
= hu
2
+ b + 1, a + 1, u
4
+ u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
u
2
1
a
4
=
1
u
2
a
2
=
0
1
a
8
=
u
u
3
a
6
=
u
3
u
2
u
u
a
12
=
u
2
u
2
1
a
10
=
1
u
3
+ u + 1
a
11
=
u 1
2u
3
+ u + 1
a
3
=
u
3
u
2
u 1
u
3
+ u
a
7
=
u
3
u
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
3
+ 7u
2
+ 3
70
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
, c
6
c
8
u
4
+ u
3
+ u
2
+ u + 1
c
3
, c
5
, c
7
c
9
u
4
u
3
+ u
2
u + 1
c
10
(u + 1)
4
c
11
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
c
12
u
4
3u
3
+ 4u
2
2u + 1
71
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y 1)
4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
y
4
+ y
3
+ y
2
+ y + 1
c
11
, c
12
y
4
y
3
+ 6y
2
+ 4y + 1
72
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
16
1(vol +
1CS) Cusp shape
u = 0.309017 + 0.951057I
a = 1.00000
b = 0.190983 0.587785I
3.94784 8.32624 + 0.I
u = 0.309017 0.951057I
a = 1.00000
b = 0.190983 + 0.587785I
3.94784 8.32624 + 0.I
u = 0.809017 + 0.587785I
a = 1.00000
b = 1.30902 + 0.95106I
3.94784 7.32624 + 0.I
u = 0.809017 0.587785I
a = 1.00000
b = 1.30902 0.95106I
3.94784 7.32624 + 0.I
73
XVII.
I
u
17
= hu
3
3u
2
+ b + 3u 1, u
3
2u
2
+ a + u + 1, u
4
3u
3
+ 4u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
u
3
+ 2u
2
u 1
u
3
+ 3u
2
3u + 1
a
4
=
1
u
2
a
2
=
u 1
u
2
2u
a
8
=
u
3
+ 3u
2
4u + 1
1
a
6
=
u
3
+ 3u
2
4u + 2
1
a
12
=
u
2
+ 2u 2
u
3
+ 3u
2
3u + 1
a
10
=
u
3
+ 2u
2
u 1
u
2
u + 1
a
11
=
u
2
+ 2u 1
u
2
a
3
=
u
2
u + 1
u
3
2u
2
+ u 1
a
7
=
u
3
+ 3u
2
3u + 1
u
3
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
3
+ 14u
2
7u 4
74
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
c
11
u
4
u
3
+ u
2
u + 1
c
2
(u + 1)
4
c
3
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
c
4
u
4
3u
3
+ 4u
2
2u + 1
c
5
(u 1)
4
c
6
, c
8
, c
10
c
12
u
4
+ u
3
+ u
2
+ u + 1
75
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
4
+ y
3
+ y
2
+ y + 1
c
2
, c
5
(y 1)
4
c
3
, c
4
y
4
y
3
+ 6y
2
+ 4y + 1
76
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
17
1(vol +
1CS) Cusp shape
u = 0.190983 + 0.587785I
a = 1.61803
b = 0.309017 0.951057I
3.94784 8.32624 + 0.I
u = 0.190983 0.587785I
a = 1.61803
b = 0.309017 + 0.951057I
3.94784 8.32624 + 0.I
u = 1.30902 + 0.95106I
a = 0.618034
b = 0.809017 + 0.587785I
3.94784 7.32624 + 0.I
u = 1.30902 0.95106I
a = 0.618034
b = 0.809017 0.587785I
3.94784 7.32624 + 0.I
77
XVIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
9
4(u 1)
4
(u + 1)
4
(u
2
u + 1)
2
(2u
2
2u + 5)(u
4
2u
3
+ ··· + 4u 1)
· (u
4
u
3
+ u
2
u + 1)
2
(u
6
4u
5
+ 7u
4
7u
3
+ 6u
2
3u + 1)
· (u
6
2u
5
u
4
+ 7u
3
2u
2
7u + 5)
· (u
6
+ 3u
5
+ 7u
4
+ 10u
3
+ 10u
2
+ 7u + 3)
2
· ((u
6
+ 5u
5
+ ··· 3u + 3)
2
)(u
12
+ 4u
11
+ ··· + 4u + 1)
2
· ((u
18
+ 5u
17
+ ··· + 29u + 11)
2
)(2u
18
42u
17
+ ··· 32768u + 4096)
c
2
, c
6
, c
10
4(u 1)
4
(u + 1)
4
(u
2
+ u + 1)
2
(2u
2
+ 2u + 5)(u
4
2u
3
+ ··· + 4u 1)
· (u
4
+ u
3
+ u
2
+ u + 1)
2
(u
6
4u
5
+ 7u
4
7u
3
+ 6u
2
3u + 1)
· (u
6
+ 2u
5
u
4
7u
3
2u
2
+ 7u + 5)
· (u
6
+ 3u
5
+ 7u
4
+ 10u
3
+ 10u
2
+ 7u + 3)
2
· ((u
6
+ 5u
5
+ ··· 3u + 3)
2
)(u
12
+ 4u
11
+ ··· + 4u + 1)
2
· ((u
18
+ 5u
17
+ ··· + 29u + 11)
2
)(2u
18
42u
17
+ ··· 32768u + 4096)
c
3
, c
7
, c
11
4(u
2
2u + 2)
2
(2u
2
+ 2u + 1)(u
4
2u
3
+ 2u
2
+ u 1)
· ((u
4
u
3
+ u
2
u + 1)
2
)(u
4
+ 2u
3
+ 2u
2
+ u + 1)(u
4
+ 3u
3
+ ··· + 2u + 1)
· (u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
6
+ u
5
+ u
4
2u
3
u + 1)
· (u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
· ((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 4u
2
+ u + 1)
2
)(u
12
+ 4u
11
+ ··· + 6u + 1)
2
· ((u
18
+ 5u
17
+ ··· + 6u + 2)
2
)(2u
18
36u
17
+ ··· 288u + 64)
c
4
, c
8
, c
12
4(u
2
+ 2u + 2)
2
(2u
2
2u + 1)(u
4
3u
3
+ 4u
2
2u + 1)
· (u
4
2u
3
+ 2u
2
u + 1)(u
4
2u
3
+ 2u
2
+ u 1)(u
4
+ u
3
+ u
2
+ u + 1)
2
· (u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
6
u
5
+ u
4
+ 2u
3
+ u + 1)
· (u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
· ((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 4u
2
+ u + 1)
2
)(u
12
+ 4u
11
+ ··· + 6u + 1)
2
· ((u
18
+ 5u
17
+ ··· + 6u + 2)
2
)(2u
18
36u
17
+ ··· 288u + 64)
78
XIX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
10
16(y 1)
8
(y
2
+ y + 1)
2
(4y
2
+ 16y + 25)(y
4
2y
3
+ ··· 18y + 1)
· (y
4
+ y
3
+ y
2
+ y + 1)
2
· (y
6
7y
5
+ 45y
4
112y
3
+ 130y
2
57y + 9)
2
· (y
6
6y
5
+ 25y
4
63y
3
+ 92y
2
69y + 25)
· (y
6
2y
5
+ 5y
4
+ 13y
3
+ 8y
2
+ 3y + 1)
· (y
6
+ 5y
5
+ 9y
4
+ 4y
3
+ 2y
2
+ 11y + 9)
2
· ((y
12
10y
11
+ ··· 14y + 1)
2
)(y
18
7y
17
+ ··· 1171y + 121)
2
· (4y
18
48y
17
+ ··· + 5242880y
2
+ 16777216)
c
3
, c
4
, c
7
c
8
, c
11
, c
12
16(y
2
+ 4)
2
(4y
2
+ 1)(y
4
+ 2y
2
+ 3y + 1)(y
4
+ 6y
2
5y + 1)
· (y
4
y
3
+ 6y
2
+ 4y + 1)(y
4
+ y
3
+ y
2
+ y + 1)
2
· (y
6
+ y
5
+ 5y
4
2y
2
y + 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
6
+ y
5
+ 9y
4
+ 20y
3
+ 18y
2
+ 7y + 1)
2
· ((y
6
+ 5y
5
+ ··· + 3y + 1)
2
)(y
12
2y
11
+ ··· + 2y + 1)
2
· ((y
18
+ 3y
17
+ ··· + 16y + 4)
2
)(4y
18
36y
17
+ ··· 50176y + 4096)
79