12n
0838
(K12n
0838
)
A knot diagram
1
Linearized knot diagam
4 12 6 1 8 12 3 1 4 8 3 10
Solving Sequence
1,4 5,9
10 8 6 3 12 7 2 11
c
4
c
9
c
8
c
5
c
3
c
12
c
6
c
2
c
11
c
1
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 2u
3
+ u
2
+ 3a 10u 1, u
4
+ 4u
2
+ 3u + 1i
I
u
2
= hb + u, u
5
3u
3
+ u
2
+ 2a + 3u 2, u
6
+ 4u
4
u
3
+ 2u
2
+ u + 1i
I
u
3
= h−25u
7
+ 373u
6
939u
5
+ 3197u
4
5553u
3
+ 8389u
2
+ 2846b 5460u + 4816,
306u
7
+ 1468u
6
1769u
5
+ 14032u
4
19745u
3
+ 37228u
2
+ 36998a 6881u + 6624,
u
8
2u
7
+ 11u
6
16u
5
+ 43u
4
34u
3
+ 70u
2
12u + 52i
I
u
4
= hb + u, u
2
+ a + 1, u
4
+ 2u
2
+ u + 1i
I
u
5
= hb u, 11u
9
+ 7u
8
+ 80u
7
+ 17u
6
+ 144u
5
42u
4
+ 13u
3
51u
2
+ 4a + 22u 13,
u
10
+ 7u
8
3u
7
+ 13u
6
12u
5
+ 5u
4
6u
3
+ 5u
2
3u + 1i
I
u
6
= hb + u + 1, a + 1, u
2
+ u + 1i
I
u
7
= hb + u + 1, a + u, u
2
+ u + 1i
I
u
8
= hb u + 1, 3a 2u + 2, u
2
u + 3i
I
u
9
= hb + u 1, a, u
2
u + 1i
I
u
10
= hb, a 1, u
2
+ u + 1i
I
v
1
= ha, b
2
b + 1, v 1i
* 11 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1
I. I
u
1
= hb u, 2u
3
+ u
2
+ 3a 10u 1, u
4
+ 4u
2
+ 3u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
2
3
u
3
1
3
u
2
+
10
3
u +
1
3
u
a
10
=
2
3
u
3
1
3
u
2
+
7
3
u +
1
3
u
a
8
=
2
3
u
3
1
3
u
2
+
10
3
u +
1
3
2
3
u
3
1
3
u
2
+
4
3
u +
1
3
a
6
=
1
3
u
3
+
2
3
u
2
5
3
u +
1
3
1
3
u
3
1
3
u
2
5
3
u
2
3
a
3
=
1
3
u
3
+
2
3
u
2
2
3
u +
1
3
1
3
u
3
2
3
u
2
1
3
u
1
3
a
12
=
1
3
u
3
1
3
u
2
2
3
u
2
3
1
3
u
3
+
1
3
u
2
+
2
3
u
1
3
a
7
=
2
3
u
3
+
4
3
u
2
4
3
u +
2
3
u
2
3u 1
a
2
=
u
u
a
11
=
1
3
u
3
+
1
3
u
2
+
2
3
u
1
3
1
3
u
3
4
3
u
2
2
3
u
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
3
u
3
+
2
3
u
2
56
3
u
41
3
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
u
4
+ 4u
2
+ 3u + 1
c
3
, c
12
u
4
+ 3u
3
+ 4u
2
+ 1
c
7
, c
8
u
4
5u
3
+ 7u
2
3u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
4
+ 8y
3
+ 18y
2
y + 1
c
3
, c
12
y
4
y
3
+ 18y
2
+ 8y + 1
c
7
, c
8
y
4
11y
3
+ 25y
2
+ 33y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.367893 + 0.310982I
a = 0.86789 + 1.17701I
b = 0.367893 + 0.310982I
0.650203 + 1.076870I 7.07727 6.47057I
u = 0.367893 0.310982I
a = 0.86789 1.17701I
b = 0.367893 0.310982I
0.650203 1.076870I 7.07727 + 6.47057I
u = 0.36789 + 2.04303I
a = 0.132107 + 1.177010I
b = 0.36789 + 2.04303I
15.7991 11.1024I 1.07727 + 3.92173I
u = 0.36789 2.04303I
a = 0.132107 1.177010I
b = 0.36789 2.04303I
15.7991 + 11.1024I 1.07727 3.92173I
5
II. I
u
2
= hb + u, u
5
3u
3
+ u
2
+ 2a + 3u 2, u
6
+ 4u
4
u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
1
2
u
5
+
3
2
u
3
1
2
u
2
3
2
u + 1
u
a
10
=
1
2
u
5
+
3
2
u
3
1
2
u
2
1
2
u + 1
u
a
8
=
1
2
u
5
+
3
2
u
3
1
2
u
2
3
2
u + 1
1
2
u
5
5
2
u
3
+
1
2
u
2
3
2
u
a
6
=
1
2
u
4
+
5
2
u
2
1
2
u +
3
2
1
2
u
4
+
3
2
u
2
1
2
u
1
2
a
3
=
1
4
u
5
1
4
u
4
+ ···
3
2
u
3
4
1
4
u
5
3
4
u
4
+ ···
5
2
u
2
1
4
a
12
=
1
4
u
5
+
1
4
u
4
+ ··· u +
3
4
1
2
u
5
3
2
u
3
+
1
2
u
2
+
1
2
u
a
7
=
1
4
u
5
+
3
4
u
4
+ ··· +
7
2
u
2
+
9
4
1
4
u
5
+
5
4
u
4
+ ··· +
1
2
u
1
4
a
2
=
u
u
a
11
=
3
4
u
5
+
3
4
u
4
+ ···
1
2
u +
1
4
1
2
u
5
+
3
2
u
3
3
2
u
2
3
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
5
+
3
4
u
4
+
9
4
u
3
+
7
2
u
2
+ 2u +
5
4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
u
6
+ 4u
4
+ u
3
+ 2u
2
u + 1
c
2
, c
4
, c
9
c
10
u
6
+ 4u
4
u
3
+ 2u
2
+ u + 1
c
3
u
6
+ 3u
5
+ 3u
4
+ u
3
+ u
2
+ u + 1
c
7
u
6
+ 5u
5
+ 10u
4
+ 13u
3
+ 12u
2
+ 10u + 13
c
8
u
6
5u
5
+ 10u
4
13u
3
+ 12u
2
10u + 13
c
12
u
6
3u
5
+ 3u
4
u
3
+ u
2
u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
6
+ 8y
5
+ 20y
4
+ 17y
3
+ 14y
2
+ 3y + 1
c
3
, c
12
y
6
3y
5
+ 5y
4
+ y
3
+ 5y
2
+ y + 1
c
7
, c
8
y
6
5y
5
6y
4
3y
3
+ 144y
2
+ 212y + 169
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.531659 + 0.753297I
a = 0.76444 1.54585I
b = 0.531659 0.753297I
9.81524 4.74950I 0.79071 + 4.27718I
u = 0.531659 0.753297I
a = 0.76444 + 1.54585I
b = 0.531659 + 0.753297I
9.81524 + 4.74950I 0.79071 4.27718I
u = 0.341164 + 0.448642I
a = 1.80674 0.44864I
b = 0.341164 0.448642I
0.108732 60.581412 + 0.10I
u = 0.341164 0.448642I
a = 1.80674 + 0.44864I
b = 0.341164 + 0.448642I
0.108732 60.581412 + 0.10I
u = 0.19050 + 1.91484I
a = 0.042290 1.122290I
b = 0.19050 1.91484I
9.81524 + 4.74950I 0.79071 4.27718I
u = 0.19050 1.91484I
a = 0.042290 + 1.122290I
b = 0.19050 + 1.91484I
9.81524 4.74950I 0.79071 + 4.27718I
9
III. I
u
3
= h−25u
7
+ 373u
6
+ · · · + 2846b + 4816, 306u
7
+ 1468u
6
+ · · · +
36998a + 6624, u
8
2u
7
+ · · · 12u + 52i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
0.00827072u
7
0.0396778u
6
+ ··· + 0.185983u 0.179037
0.00878426u
7
0.131061u
6
+ ··· + 1.91848u 1.69220
a
10
=
0.0170550u
7
+ 0.0913833u
6
+ ··· 1.73250u + 1.51316
0.00878426u
7
0.131061u
6
+ ··· + 1.91848u 1.69220
a
8
=
0.00827072u
7
0.0396778u
6
+ ··· + 0.185983u 0.179037
0.0351370u
7
0.0242446u
6
+ ··· + 1.67393u + 1.23120
a
6
=
0.0925050u
7
0.268636u
6
+ ··· + 3.35694u 1.17401
0.0562193u
7
+ 0.138791u
6
+ ··· 0.278285u 0.569923
a
3
=
0.0345424u
7
+ 0.0107573u
6
+ ··· 1.10560u 2.92421
0.00878426u
7
+ 0.131061u
6
+ ··· 2.91848u + 3.69220
a
12
=
0.0255014u
7
+ 0.0443267u
6
+ ··· + 1.61511u 0.552030
0.0101897u
7
0.0720309u
6
+ ··· 1.37456u 1.60295
a
7
=
0.214593u
7
0.333261u
6
+ ··· + 5.11320u + 4.17471
0.131061u
7
0.00456781u
6
+ ··· + 2.57625u 8.07238
a
2
=
u
u
a
11
=
0.111844u
7
+ 0.264095u
6
+ ··· 4.98824u + 3.16714
0.197119u
7
0.221012u
6
+ ··· + 3.65074u + 2.26704
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3
1423
u
7
+
126
1423
u
6
115
1423
u
5
+
584
1423
u
4
+
211
1423
u
3
+
644
1423
u
2
+
2932
1423
u +
3748
1423
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
u
8
2u
7
+ 11u
6
16u
5
+ 43u
4
34u
3
+ 70u
2
12u + 52
c
3
, c
12
(u
4
3u
2
+ 2u + 5)
2
c
7
, c
8
(u
4
+ 4u
3
+ 3u
2
+ 5)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
8
+ 18y
7
+ ··· + 7136y + 2704
c
3
, c
12
(y
4
6y
3
+ 19y
2
34y + 25)
2
c
7
, c
8
(y
4
10y
3
+ 19y
2
+ 30y + 25)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.318348 + 0.988585I
a = 0.902055 + 0.085959I
b = 1.18274 + 1.38356I
12.33700 3.66386I 2.00000 + 2.00000I
u = 0.318348 0.988585I
a = 0.902055 0.085959I
b = 1.18274 1.38356I
12.33700 + 3.66386I 2.00000 2.00000I
u = 0.24810 + 1.76504I
a = 0.260593 1.307340I
b = 0.11249 2.13718I
12.33700 3.66386I 2.00000 + 2.00000I
u = 0.24810 1.76504I
a = 0.260593 + 1.307340I
b = 0.11249 + 2.13718I
12.33700 + 3.66386I 2.00000 2.00000I
u = 1.18274 + 1.38356I
a = 0.228120 + 0.463986I
b = 0.318348 + 0.988585I
12.33700 3.66386I 2.00000 + 2.00000I
u = 1.18274 1.38356I
a = 0.228120 0.463986I
b = 0.318348 0.988585I
12.33700 + 3.66386I 2.00000 2.00000I
u = 0.11249 + 2.13718I
a = 0.121537 1.103540I
b = 0.24810 1.76504I
12.33700 + 3.66386I 2.00000 2.00000I
u = 0.11249 2.13718I
a = 0.121537 + 1.103540I
b = 0.24810 + 1.76504I
12.33700 3.66386I 2.00000 + 2.00000I
13
IV. I
u
4
= hb + u, u
2
+ a + 1, u
4
+ 2u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
u
2
1
u
a
10
=
u
2
+ u 1
u
a
8
=
u
2
1
u
2
+ 1
a
6
=
u
3
+ u + 1
u
3
+ u
2
u
a
3
=
u
3
2u + 1
u
3
+ u 1
a
12
=
u
3
u
2
2u 2
u
3
+ u
2
+ 2u + 1
a
7
=
2u
3
+ 2u
2u
3
+ u
2
u + 1
a
2
=
u
u
a
11
=
u
3
u
2
1
u
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 2u
2
12u 7
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
u
4
+ 2u
2
u + 1
c
2
, c
4
, c
9
c
10
u
4
+ 2u
2
+ u + 1
c
3
u
4
+ u
3
+ 4u
2
+ 2u + 3
c
7
u
4
+ 3u
3
+ 3u
2
+ u + 1
c
8
u
4
3u
3
+ 3u
2
u + 1
c
12
u
4
u
3
+ 4u
2
2u + 3
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
4
+ 4y
3
+ 6y
2
+ 3y + 1
c
3
, c
12
y
4
+ 7y
3
+ 18y
2
+ 20y + 9
c
7
, c
8
y
4
3y
3
+ 5y
2
+ 5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.343815 + 0.625358I
a = 0.727136 + 0.430014I
b = 0.343815 0.625358I
1.13814 + 3.38562I 6.32177 8.18198I
u = 0.343815 0.625358I
a = 0.727136 0.430014I
b = 0.343815 + 0.625358I
1.13814 3.38562I 6.32177 + 8.18198I
u = 0.343815 + 1.358440I
a = 0.727136 0.934099I
b = 0.343815 1.358440I
4.42801 2.37936I 0.32177 + 1.76734I
u = 0.343815 1.358440I
a = 0.727136 + 0.934099I
b = 0.343815 + 1.358440I
4.42801 + 2.37936I 0.32177 1.76734I
17
V. I
u
5
= hb u, 11u
9
+ 7u
8
+ · · · + 4a 13, u
10
+ 7u
8
+ · · · 3u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
11
4
u
9
7
4
u
8
+ ···
11
2
u +
13
4
u
a
10
=
11
4
u
9
7
4
u
8
+ ···
13
2
u +
13
4
u
a
8
=
11
4
u
9
7
4
u
8
+ ···
11
2
u +
13
4
3
4
u
9
1
4
u
8
+ ···
3
2
u +
7
4
a
6
=
7
4
u
9
3
4
u
8
+ ··· 5u +
15
4
1
4
u
9
1
4
u
8
+ ···
1
2
u +
3
4
a
3
=
2u
9
u
8
+ ···
9
2
u + 5
3
4
u
9
1
4
u
8
+ ···
3
2
u +
5
4
a
12
=
7
4
u
9
+
7
4
u
8
+ ··· + u
9
4
3
4
u
9
+
1
4
u
8
+ ··· +
7
2
u
7
4
a
7
=
15
4
u
9
7
4
u
8
+ ···
17
2
u +
35
4
u
9
1
2
u
8
+ ··· 3u + 2
a
2
=
u
u
a
11
=
11
2
u
9
7
2
u
8
+ ···
29
2
u +
15
2
11
4
u
9
7
4
u
8
+ ··· 5u +
15
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
9
+
3
4
u
8
u
7
+
27
4
u
6
1
2
u
5
+
31
2
u
4
11
4
u
3
+
19
4
u
2
15
2
u
3
4
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
u
10
+ 7u
8
3u
7
+ 13u
6
12u
5
+ 5u
4
6u
3
+ 5u
2
3u + 1
c
3
, c
12
u
10
+ 6u
9
+ ··· + 8u + 4
c
7
, c
8
u
10
8u
9
+ ··· 34u + 4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
10
+ 14y
9
+ 75y
8
+ 183y
7
+ 177y
6
+ 22y
5
+ 7y
4
32y
3
y
2
+ y + 1
c
3
, c
12
y
10
+ 2y
9
+ ··· + 120y + 16
c
7
, c
8
y
10
20y
9
+ ··· 300y + 16
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.486518 + 0.632836I
a = 0.079644 + 0.328409I
b = 0.486518 + 0.632836I
0.61761 + 1.79087I 3.17008 3.84422I
u = 0.486518 0.632836I
a = 0.079644 0.328409I
b = 0.486518 0.632836I
0.61761 1.79087I 3.17008 + 3.84422I
u = 0.621008 + 0.075641I
a = 1.79439 1.51840I
b = 0.621008 + 0.075641I
9.12328 3.14851I 1.88527 + 0.97081I
u = 0.621008 0.075641I
a = 1.79439 + 1.51840I
b = 0.621008 0.075641I
9.12328 + 3.14851I 1.88527 0.97081I
u = 0.239585 + 0.499962I
a = 1.76390 + 0.24899I
b = 0.239585 + 0.499962I
0.61761 + 1.79087I 3.17008 3.84422I
u = 0.239585 0.499962I
a = 1.76390 0.24899I
b = 0.239585 0.499962I
0.61761 1.79087I 3.17008 + 3.84422I
u = 0.06345 + 1.88716I
a = 0.084885 + 1.197580I
b = 0.06345 + 1.88716I
9.12328 + 3.14851I 1.88527 0.97081I
u = 0.06345 1.88716I
a = 0.084885 1.197580I
b = 0.06345 1.88716I
9.12328 3.14851I 1.88527 + 0.97081I
u = 0.31062 + 1.88752I
a = 0.474749 + 1.077290I
b = 0.31062 + 1.88752I
17.0114 61.110699 + 0.10I
u = 0.31062 1.88752I
a = 0.474749 1.077290I
b = 0.31062 1.88752I
17.0114 61.110699 + 0.10I
21
VI. I
u
6
= hb + u + 1, a + 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u 1
a
9
=
1
u 1
a
10
=
u
u 1
a
8
=
1
0
a
6
=
u + 2
u 1
a
3
=
2u
u
a
12
=
1
0
a
7
=
2u + 3
u 1
a
2
=
u
u
a
11
=
2u + 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
u
2
+ u + 1
c
3
, c
12
u
2
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
25
VII. I
u
7
= hb + u + 1, a + u, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u 1
a
9
=
u
u 1
a
10
=
1
u 1
a
8
=
u
u 2
a
6
=
0
u
a
3
=
1
u 1
a
12
=
u
u 1
a
7
=
1
2u + 2
a
2
=
u
u
a
11
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
u
2
+ u + 1
c
3
, c
12
u
2
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
29
VIII. I
u
8
= hb u + 1, 3a 2u + 2, u
2
u + 3i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u 3
a
9
=
2
3
u
2
3
u 1
a
10
=
1
3
u +
1
3
u 1
a
8
=
2
3
u
2
3
u 1
a
6
=
2
3
u
1
3
1
a
3
=
2
3
u +
2
3
1
a
12
=
1
3
u
1
3
1
a
7
=
2
3
u +
2
3
u + 1
a
2
=
u
u
a
11
=
1
3
u
5
3
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
u
2
+ u + 3
c
2
, c
4
, c
9
c
10
u
2
u + 3
c
3
(u 1)
2
c
7
(u 2)
2
c
8
(u + 2)
2
c
12
(u + 1)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
2
+ 5y + 9
c
3
, c
12
(y 1)
2
c
7
, c
8
(y 4)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.65831I
a = 0.333333 + 1.105540I
b = 0.50000 + 1.65831I
13.1595 3.00000
u = 0.50000 1.65831I
a = 0.333333 1.105540I
b = 0.50000 1.65831I
13.1595 3.00000
33
IX. I
u
9
= hb + u 1, a, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u 1
a
9
=
0
u + 1
a
10
=
u 1
u + 1
a
8
=
0
u + 1
a
6
=
1
1
a
3
=
0
1
a
12
=
u 1
1
a
7
=
0
u 1
a
2
=
u
u
a
11
=
u 1
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
u
2
u + 1
c
3
, c
12
(u 1)
2
c
7
, c
8
u
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
2
+ y + 1
c
3
, c
12
(y 1)
2
c
7
, c
8
y
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
3.28987 3.00000
u = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
3.28987 3.00000
37
X. I
u
10
= hb, a 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u 1
a
9
=
1
0
a
10
=
1
0
a
8
=
1
u 1
a
6
=
1
u 1
a
3
=
u
u
a
12
=
u
u
a
7
=
2
u 2
a
2
=
u
u
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
12
u
2
u + 1
c
2
, c
5
, c
9
c
11
u
2
c
3
, c
4
, c
8
c
10
u
2
+ u + 1
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
8
c
10
, c
12
y
2
+ y + 1
c
2
, c
5
, c
9
c
11
y
2
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
0 0
u = 0.500000 0.866025I
a = 1.00000
b = 0
0 0
41
XI. I
v
1
= ha, b
2
b + 1, v 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
1
0
a
5
=
1
0
a
9
=
0
b
a
10
=
b
b
a
8
=
b
b
a
6
=
b + 2
b 1
a
3
=
2b
b
a
12
=
b + 2
b 1
a
7
=
b + 2
b 1
a
2
=
1
0
a
11
=
b
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
42
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
10
u
2
c
2
, c
3
, c
8
c
9
u
2
+ u + 1
c
5
, c
7
, c
11
c
12
u
2
u + 1
43
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
2
c
2
, c
3
, c
5
c
7
, c
8
, c
9
c
11
, c
12
y
2
+ y + 1
44
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
0 0
v = 1.00000
a = 0
b = 0.500000 0.866025I
0 0
45
XII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
u
2
(u
2
u + 1)
2
(u
2
+ u + 1)
2
(u
2
+ u + 3)(u
4
+ 2u
2
u + 1)
· (u
4
+ 4u
2
+ 3u + 1)(u
6
+ 4u
4
+ u
3
+ 2u
2
u + 1)
· (u
8
2u
7
+ 11u
6
16u
5
+ 43u
4
34u
3
+ 70u
2
12u + 52)
· (u
10
+ 7u
8
3u
7
+ 13u
6
12u
5
+ 5u
4
6u
3
+ 5u
2
3u + 1)
c
2
, c
4
, c
9
c
10
u
2
(u
2
u + 1)(u
2
u + 3)(u
2
+ u + 1)
3
(u
4
+ 2u
2
+ u + 1)(u
4
+ 4u
2
+ 3u + 1)
· (u
6
+ 4u
4
u
3
+ 2u
2
+ u + 1)
· (u
8
2u
7
+ 11u
6
16u
5
+ 43u
4
34u
3
+ 70u
2
12u + 52)
· (u
10
+ 7u
8
3u
7
+ 13u
6
12u
5
+ 5u
4
6u
3
+ 5u
2
3u + 1)
c
3
(u 1)
4
(u
2
u + 1)
2
(u
2
+ u + 1)
2
(u
4
3u
2
+ 2u + 5)
2
· (u
4
+ u
3
+ 4u
2
+ 2u + 3)(u
4
+ 3u
3
+ 4u
2
+ 1)
· (u
6
+ 3u
5
+ 3u
4
+ u
3
+ u
2
+ u + 1)(u
10
+ 6u
9
+ ··· + 8u + 4)
c
7
u
2
(u 2)
2
(u
2
u + 1)
2
(u
2
+ u + 1)
2
(u
4
5u
3
+ 7u
2
3u + 3)
· (u
4
+ 3u
3
+ 3u
2
+ u + 1)(u
4
+ 4u
3
+ 3u
2
+ 5)
2
· (u
6
+ 5u
5
+ ··· + 10u + 13)(u
10
8u
9
+ ··· 34u + 4)
c
8
u
2
(u + 2)
2
(u
2
+ u + 1)
4
(u
4
5u
3
+ 7u
2
3u + 3)
· (u
4
3u
3
+ 3u
2
u + 1)(u
4
+ 4u
3
+ 3u
2
+ 5)
2
· (u
6
5u
5
+ ··· 10u + 13)(u
10
8u
9
+ ··· 34u + 4)
c
12
(u 1)
2
(u + 1)
2
(u
2
u + 1)
4
(u
4
3u
2
+ 2u + 5)
2
· (u
4
u
3
+ 4u
2
2u + 3)(u
4
+ 3u
3
+ 4u
2
+ 1)
· (u
6
3u
5
+ 3u
4
u
3
+ u
2
u + 1)(u
10
+ 6u
9
+ ··· + 8u + 4)
46
XIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
2
(y
2
+ y + 1)
4
(y
2
+ 5y + 9)(y
4
+ 4y
3
+ 6y
2
+ 3y + 1)
· (y
4
+ 8y
3
+ 18y
2
y + 1)(y
6
+ 8y
5
+ 20y
4
+ 17y
3
+ 14y
2
+ 3y + 1)
· (y
8
+ 18y
7
+ ··· + 7136y + 2704)
· (y
10
+ 14y
9
+ 75y
8
+ 183y
7
+ 177y
6
+ 22y
5
+ 7y
4
32y
3
y
2
+ y + 1)
c
3
, c
12
(y 1)
4
(y
2
+ y + 1)
4
(y
4
6y
3
+ 19y
2
34y + 25)
2
· (y
4
y
3
+ 18y
2
+ 8y + 1)(y
4
+ 7y
3
+ 18y
2
+ 20y + 9)
· (y
6
3y
5
+ 5y
4
+ y
3
+ 5y
2
+ y + 1)(y
10
+ 2y
9
+ ··· + 120y + 16)
c
7
, c
8
y
2
(y 4)
2
(y
2
+ y + 1)
4
(y
4
11y
3
+ 25y
2
+ 33y + 9)
· (y
4
10y
3
+ 19y
2
+ 30y + 25)
2
(y
4
3y
3
+ 5y
2
+ 5y + 1)
· (y
6
5y
5
6y
4
3y
3
+ 144y
2
+ 212y + 169)
· (y
10
20y
9
+ ··· 300y + 16)
47