12n
0844
(K12n
0844
)
A knot diagram
1
Linearized knot diagam
4 10 6 1 8 2 10 5 12 6 2 9
Solving Sequence
1,5
4
2,9
8 6 3 12 10 7 11
c
4
c
1
c
8
c
5
c
3
c
12
c
9
c
7
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, a 1, u
7
2u
6
+ 6u
5
6u
4
+ 7u
3
3u
2
1i
I
u
2
= hb + u, a + 1, u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
+ u + 1i
I
u
3
= hb + u, 2u
13
+ u
12
+ 14u
11
+ u
10
+ 36u
9
14u
8
+ 40u
7
42u
6
+ 19u
5
39u
4
+ 11u
3
8u
2
+ 2a + 9u + 1,
u
14
+ u
13
+ 8u
12
+ 5u
11
+ 23u
10
+ 6u
9
+ 26u
8
7u
7
+ 4u
6
17u
5
6u
4
4u
3
+ 4u
2
+ 4u + 1i
I
u
4
= hu
13
+ 2u
12
+ 9u
11
+ 10u
10
+ 26u
9
+ 12u
8
+ 28u
7
11u
6
+ 5u
5
23u
4
u
2
+ 2b + 7u + 2, a 1,
u
14
+ u
13
+ 8u
12
+ 5u
11
+ 23u
10
+ 6u
9
+ 26u
8
7u
7
+ 4u
6
17u
5
6u
4
4u
3
+ 4u
2
+ 4u + 1i
I
u
5
= h−27u
13
+ 169u
12
+ ··· + 6b + 152, 38u
13
239u
12
+ ··· + 6a 200, u
14
7u
13
+ ··· 16u + 4i
I
u
6
= hb + u, u
5
+ 3u
3
+ a + 3u, u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
7
= h−u
3
+ b 2u 1, a + 1, u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
8
= h−u
5
u
4
4u
3
6u
2
+ 4b 7u 6, 3u
5
+ 7u
4
+ 16u
3
+ 22u
2
+ 8a + 21u + 10,
u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4i
I
u
9
= hu
5
+ u
3
2au + 2u
2
+ 2b 3u + 1,
u
5
a + 25u
5
+ 3u
3
a + 20u
4
+ 4u
2
a + 71u
3
+ 2a
2
+ au + 112u
2
+ 9a + 53u + 141,
u
6
+ u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ 6u + 1i
* 9 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1
I. I
u
1
= hb + u, a 1, u
7
2u
6
+ 6u
5
6u
4
+ 7u
3
3u
2
1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
1
u
a
8
=
u + 1
u
a
6
=
u
2
u + 1
u
2
a
3
=
u
6
2u
5
+ 4u
4
3u
3
+ 2u
2
+ 1
u
6
u
5
+ 2u
4
u
2
a
12
=
u
u
2
+ u
a
10
=
u
2
+ 1
u
3
+ u
2
u
a
7
=
u
6
u
5
+ 3u
4
u
3
+ 2u
2
u + 1
2u
5
3u
4
+ 5u
3
3u
2
u 1
a
11
=
u
5
+ u
4
2u
3
+ u
u
6
3u
5
+ 5u
4
5u
3
+ 2u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
6
6u
5
+ 15u
4
18u
3
+ 15u
2
12u + 3
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
u
7
2u
6
+ 6u
5
6u
4
+ 7u
3
3u
2
1
c
2
, c
6
, c
10
u
7
5u
6
+ 7u
5
3u
3
2u
2
+ u 1
c
3
, c
7
, c
11
u
7
+ 6u
6
+ 15u
5
+ 17u
4
+ 7u
3
3u
2
2u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
y
7
+ 8y
6
+ 26y
5
+ 36y
4
+ 9y
3
21y
2
6y 1
c
2
, c
6
, c
10
y
7
11y
6
+ 43y
5
60y
4
+ 13y
3
10y
2
3y 1
c
3
, c
7
, c
11
y
7
6y
6
+ 35y
5
47y
4
+ 67y
3
105y
2
+ 16y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.820643
a = 1.00000
b = 0.820643
4.61500 1.20760
u = 0.29696 + 1.40213I
a = 1.00000
b = 0.29696 1.40213I
9.73442 0.66586I 5.31181 1.86830I
u = 0.29696 1.40213I
a = 1.00000
b = 0.29696 + 1.40213I
9.73442 + 0.66586I 5.31181 + 1.86830I
u = 0.196466 + 0.415967I
a = 1.00000
b = 0.196466 0.415967I
0.207126 + 1.131650I 1.63683 6.29574I
u = 0.196466 0.415967I
a = 1.00000
b = 0.196466 + 0.415967I
0.207126 1.131650I 1.63683 + 6.29574I
u = 0.48918 + 1.60119I
a = 1.00000
b = 0.48918 1.60119I
19.6512 14.5525I 7.15517 + 5.93239I
u = 0.48918 1.60119I
a = 1.00000
b = 0.48918 + 1.60119I
19.6512 + 14.5525I 7.15517 5.93239I
5
II. I
u
2
= hb + u, a + 1, u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
1
u
a
8
=
u 1
u
a
6
=
u
2
+ u + 1
u
2
a
3
=
u
5
+ u
4
+ 2u
3
u
u
4
u
3
3u
2
u 1
a
12
=
u
u
2
+ u
a
10
=
u
2
1
u
3
u
2
u
a
7
=
0
u
4
+ u
3
+ 3u
2
+ u + 1
a
11
=
u
5
u
4
2u
3
+ u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
5
6u
4
21u
3
+ 3u
2
9u
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
9
u
6
u
5
+ 3u
4
u
3
+ 2u
2
u + 1
c
2
, c
6
, c
10
u
6
+ 4u
5
+ 5u
4
+ 3u
3
+ 2u
2
+ 1
c
3
, c
7
, c
11
u
6
+ 2u
5
u
4
3u
3
+ u
2
u + 2
c
4
, c
8
, c
12
u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
+ u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
y
6
+ 5y
5
+ 11y
4
+ 11y
3
+ 8y
2
+ 3y + 1
c
2
, c
6
, c
10
y
6
6y
5
+ 5y
4
+ 13y
3
+ 14y
2
+ 4y + 1
c
3
, c
7
, c
11
y
6
6y
5
+ 15y
4
3y
3
9y
2
+ 3y + 4
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.411715 + 0.779640I
a = 1.00000
b = 0.411715 0.779640I
10.29080 4.97121I 7.46638 + 3.54102I
u = 0.411715 0.779640I
a = 1.00000
b = 0.411715 + 0.779640I
10.29080 + 4.97121I 7.46638 3.54102I
u = 0.459082 + 0.581397I
a = 1.00000
b = 0.459082 0.581397I
0.53119 + 2.71432I 2.78148 9.27411I
u = 0.459082 0.581397I
a = 1.00000
b = 0.459082 + 0.581397I
0.53119 2.71432I 2.78148 + 9.27411I
u = 0.45263 + 1.46263I
a = 1.00000
b = 0.45263 1.46263I
8.33462 + 8.14586I 2.81510 6.35297I
u = 0.45263 1.46263I
a = 1.00000
b = 0.45263 + 1.46263I
8.33462 8.14586I 2.81510 + 6.35297I
9
III. I
u
3
= hb + u, 2u
13
+ u
12
+ · · · + 2a + 1, u
14
+ u
13
+ · · · + 4u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
u
13
1
2
u
12
+ ···
9
2
u
1
2
u
a
8
=
u
13
1
2
u
12
+ ···
11
2
u
1
2
u
a
6
=
1
2
u
13
u
12
+ ··· +
3
2
u
2
7
2
u
u
2
a
3
=
1
2
u
13
4u
12
+ ···
19
2
u 2
1
2
u
13
7
2
u
12
+ ··· 6u
3
2
a
12
=
1
2
u
13
1
2
u
12
+ ··· + 2u +
5
2
1
2
u
13
1
2
u
12
+ ··· + 2u +
1
2
a
10
=
1
2
u
13
5
2
u
12
+ ··· 8u
5
2
u
13
5
2
u
12
+ ···
11
2
u
3
2
a
7
=
u
13
3u
12
+ ··· 7u 1
1
2
u
13
3
2
u
12
+ ··· 3u
1
2
a
11
=
1
2
u
13
+ u
12
+ ··· +
11
2
u + 3
3
2
u
12
+ 2u
11
+ ··· +
9
2
u +
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3u
13
4u
12
27u
11
21u
10
83u
9
23u
8
97u
7
+43u
6
14u
5
+86u
4
+16u
3
+12u
2
29u10
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
u
14
+ u
13
+ ··· + 4u + 1
c
2
, c
10
u
14
+ 4u
13
+ ··· 3u
2
+ 1
c
3
u
14
+ 14u
13
+ ··· + 384u + 64
c
6
u
14
8u
13
+ ··· 100u + 52
c
7
, c
11
u
14
4u
13
+ ··· 27u + 7
c
9
, c
12
u
14
7u
13
+ ··· 16u + 4
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
14
+ 15y
13
+ ··· 8y + 1
c
2
, c
10
y
14
22y
13
+ ··· 6y + 1
c
3
y
14
2y
13
+ ··· + 53248y + 4096
c
6
y
14
14y
13
+ ··· + 6016y + 2704
c
7
, c
11
y
14
16y
13
+ ··· + 69y + 49
c
9
, c
12
y
14
+ 7y
13
+ ··· + 80y + 16
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.439663 + 0.679978I
a = 0.517883 + 0.552774I
b = 0.439663 0.679978I
0.33027 + 1.75564I 4.64860 3.95549I
u = 0.439663 0.679978I
a = 0.517883 0.552774I
b = 0.439663 + 0.679978I
0.33027 1.75564I 4.64860 + 3.95549I
u = 0.736420 + 0.153256I
a = 0.89088 + 1.45567I
b = 0.736420 0.153256I
8.26670 4.44391I 1.65913 + 3.08844I
u = 0.736420 0.153256I
a = 0.89088 1.45567I
b = 0.736420 + 0.153256I
8.26670 + 4.44391I 1.65913 3.08844I
u = 0.149559 + 1.356980I
a = 0.079573 0.538803I
b = 0.149559 1.356980I
5.20834 + 3.21642I 7.19365 4.36535I
u = 0.149559 1.356980I
a = 0.079573 + 0.538803I
b = 0.149559 + 1.356980I
5.20834 3.21642I 7.19365 + 4.36535I
u = 0.074998 + 1.387310I
a = 1.229600 0.602077I
b = 0.074998 1.387310I
16.9219 + 0.9403I 9.61641 0.21990I
u = 0.074998 1.387310I
a = 1.229600 + 0.602077I
b = 0.074998 + 1.387310I
16.9219 0.9403I 9.61641 + 0.21990I
u = 0.24560 + 1.40926I
a = 0.449017 0.948524I
b = 0.24560 1.40926I
13.3854 7.8624I 6.65538 + 4.81795I
u = 0.24560 1.40926I
a = 0.449017 + 0.948524I
b = 0.24560 + 1.40926I
13.3854 + 7.8624I 6.65538 4.81795I
13
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.47718 + 1.55138I
a = 0.863496 + 0.085310I
b = 0.47718 1.55138I
9.82711 + 6.87495I 7.39941 2.87557I
u = 0.47718 1.55138I
a = 0.863496 0.085310I
b = 0.47718 + 1.55138I
9.82711 6.87495I 7.39941 + 2.87557I
u = 0.340624 + 0.151528I
a = 1.35065 1.83502I
b = 0.340624 0.151528I
0.343098 + 1.223190I 0.32742 6.66845I
u = 0.340624 0.151528I
a = 1.35065 + 1.83502I
b = 0.340624 + 0.151528I
0.343098 1.223190I 0.32742 + 6.66845I
14
IV. I
u
4
= hu
13
+ 2u
12
+ · · · + 2b + 2, a 1, u
14
+ u
13
+ · · · + 4u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
1
1
2
u
13
u
12
+ ···
7
2
u 1
a
8
=
1
2
u
13
u
12
+ ··· +
1
2
u
2
7
2
u
1
2
u
13
u
12
+ ···
7
2
u 1
a
6
=
3
2
u
13
1
2
u
12
+ ··· 3u
1
2
u
13
+
1
2
u
12
+ ··· +
1
2
u
1
2
a
3
=
1
2
u
13
5
2
u
11
+ ··· +
5
2
u + 1
1
2
u
13
+ u
12
+ ··· +
11
2
u + 2
a
12
=
u
1
2
u
13
1
2
u
12
+ ··· + 2u +
1
2
a
10
=
u
2
+ 1
1
2
u
13
+
1
2
u
12
+ ··· u
1
2
a
7
=
3
2
u
13
3
2
u
12
+ ··· 6u
3
2
u
13
1
2
u
12
+ ···
1
2
u
1
2
a
11
=
3
2
u
13
u
12
+ ···
5
2
u
2
+
1
2
u
2u
13
u
12
+ ··· + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3u
13
4u
12
27u
11
21u
10
83u
9
23u
8
97u
7
+43u
6
14u
5
+86u
4
+16u
3
+12u
2
29u10
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
c
12
u
14
+ u
13
+ ··· + 4u + 1
c
2
u
14
8u
13
+ ··· 100u + 52
c
3
, c
7
u
14
4u
13
+ ··· 27u + 7
c
5
, c
8
u
14
7u
13
+ ··· 16u + 4
c
6
, c
10
u
14
+ 4u
13
+ ··· 3u
2
+ 1
c
11
u
14
+ 14u
13
+ ··· + 384u + 64
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
c
12
y
14
+ 15y
13
+ ··· 8y + 1
c
2
y
14
14y
13
+ ··· + 6016y + 2704
c
3
, c
7
y
14
16y
13
+ ··· + 69y + 49
c
5
, c
8
y
14
+ 7y
13
+ ··· + 80y + 16
c
6
, c
10
y
14
22y
13
+ ··· 6y + 1
c
11
y
14
2y
13
+ ··· + 53248y + 4096
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.439663 + 0.679978I
a = 1.00000
b = 0.148180 + 0.595184I
0.33027 + 1.75564I 4.64860 3.95549I
u = 0.439663 0.679978I
a = 1.00000
b = 0.148180 0.595184I
0.33027 1.75564I 4.64860 + 3.95549I
u = 0.736420 + 0.153256I
a = 1.00000
b = 0.432968 1.208520I
8.26670 4.44391I 1.65913 + 3.08844I
u = 0.736420 0.153256I
a = 1.00000
b = 0.432968 + 1.208520I
8.26670 + 4.44391I 1.65913 3.08844I
u = 0.149559 + 1.356980I
a = 1.00000
b = 0.743045 + 0.027396I
5.20834 + 3.21642I 7.19365 4.36535I
u = 0.149559 1.356980I
a = 1.00000
b = 0.743045 0.027396I
5.20834 3.21642I 7.19365 + 4.36535I
u = 0.074998 + 1.387310I
a = 1.00000
b = 0.92749 + 1.66068I
16.9219 + 0.9403I 9.61641 0.21990I
u = 0.074998 1.387310I
a = 1.00000
b = 0.92749 1.66068I
16.9219 0.9403I 9.61641 + 0.21990I
u = 0.24560 + 1.40926I
a = 1.00000
b = 1.44700 0.39982I
13.3854 7.8624I 6.65538 + 4.81795I
u = 0.24560 1.40926I
a = 1.00000
b = 1.44700 + 0.39982I
13.3854 + 7.8624I 6.65538 4.81795I
18
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.47718 + 1.55138I
a = 1.00000
b = 0.279692 + 1.380320I
9.82711 + 6.87495I 7.39941 2.87557I
u = 0.47718 1.55138I
a = 1.00000
b = 0.279692 1.380320I
9.82711 6.87495I 7.39941 + 2.87557I
u = 0.340624 + 0.151528I
a = 1.00000
b = 0.182009 0.829712I
0.343098 + 1.223190I 0.32742 6.66845I
u = 0.340624 0.151528I
a = 1.00000
b = 0.182009 + 0.829712I
0.343098 1.223190I 0.32742 + 6.66845I
19
V. I
u
5
= h−27u
13
+ 169u
12
+ · · · + 6b + 152, 38u
13
239u
12
+ · · · + 6a
200, u
14
7u
13
+ · · · 16u + 4i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
6.33333u
13
+ 39.8333u
12
+ ··· 91.1667u + 33.3333
9
2
u
13
169
6
u
12
+ ··· + 68u
76
3
a
8
=
11
6
u
13
+
35
3
u
12
+ ···
139
6
u + 8
9
2
u
13
169
6
u
12
+ ··· + 68u
76
3
a
6
=
11
12
u
13
+
73
12
u
12
+ ···
55
3
u + 7
3
2
u
13
28
3
u
12
+ ··· + 23u
29
3
a
3
=
8
3
u
13
101
6
u
12
+ ··· +
245
6
u 15
3.66667u
13
+ 23.1667u
12
+ ··· 54.3333u + 20.6667
a
12
=
2.41667u
13
15.4167u
12
+ ··· + 41.3333u 15.6667
3
2
u
13
+
28
3
u
12
+ ··· 22u +
29
3
a
10
=
55
12
u
13
341
12
u
12
+ ··· +
179
3
u 23
7u
13
+
131
3
u
12
+ ··· 97u +
109
3
a
7
=
3
4
u
13
+
61
12
u
12
+ ··· 14u +
17
3
5
6
u
13
11
2
u
12
+ ··· +
50
3
u
23
3
a
11
=
7
4
u
13
45
4
u
12
+ ··· + 31u 11
1
6
u
13
+
4
3
u
12
+ ···
19
3
u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
27
2
u
13
503
6
u
12
+
935
3
u
11
4757
6
u
10
+
4559
3
u
9
2313u
8
+
8509
3
u
7
5779
2
u
6
+
7508
3
u
5
5368
3
u
4
+
3413
3
u
3
1574
3
u
2
+ 210u
224
3
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
14
7u
13
+ ··· 16u + 4
c
2
, c
6
u
14
+ 4u
13
+ ··· 3u
2
+ 1
c
3
, c
11
u
14
4u
13
+ ··· 27u + 7
c
5
, c
8
, c
9
c
12
u
14
+ u
13
+ ··· + 4u + 1
c
7
u
14
+ 14u
13
+ ··· + 384u + 64
c
10
u
14
8u
13
+ ··· 100u + 52
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
+ 7y
13
+ ··· + 80y + 16
c
2
, c
6
y
14
22y
13
+ ··· 6y + 1
c
3
, c
11
y
14
16y
13
+ ··· + 69y + 49
c
5
, c
8
, c
9
c
12
y
14
+ 15y
13
+ ··· 8y + 1
c
7
y
14
2y
13
+ ··· + 53248y + 4096
c
10
y
14
14y
13
+ ··· + 6016y + 2704
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.182009 + 0.829712I
a = 0.260164 + 0.353462I
b = 0.340624 0.151528I
0.343098 + 1.223190I 0.32742 6.66845I
u = 0.182009 0.829712I
a = 0.260164 0.353462I
b = 0.340624 + 0.151528I
0.343098 1.223190I 0.32742 + 6.66845I
u = 0.743045 + 0.027396I
a = 0.26825 1.81635I
b = 0.149559 + 1.356980I
5.20834 3.21642I 7.19365 + 4.36535I
u = 0.743045 0.027396I
a = 0.26825 + 1.81635I
b = 0.149559 1.356980I
5.20834 + 3.21642I 7.19365 4.36535I
u = 0.432968 + 1.208520I
a = 0.305865 0.499777I
b = 0.736420 0.153256I
8.26670 4.44391I 1.65913 + 3.08844I
u = 0.432968 1.208520I
a = 0.305865 + 0.499777I
b = 0.736420 + 0.153256I
8.26670 + 4.44391I 1.65913 3.08844I
u = 0.148180 + 0.595184I
a = 0.902610 + 0.963420I
b = 0.439663 + 0.679978I
0.33027 1.75564I 4.64860 + 3.95549I
u = 0.148180 0.595184I
a = 0.902610 0.963420I
b = 0.439663 0.679978I
0.33027 + 1.75564I 4.64860 3.95549I
u = 0.279692 + 1.380320I
a = 1.146890 + 0.113308I
b = 0.47718 + 1.55138I
9.82711 6.87495I 7.39941 + 2.87557I
u = 0.279692 1.380320I
a = 1.146890 0.113308I
b = 0.47718 1.55138I
9.82711 + 6.87495I 7.39941 2.87557I
23
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.44700 + 0.39982I
a = 0.407711 + 0.861266I
b = 0.24560 1.40926I
13.3854 7.8624I 6.65538 + 4.81795I
u = 1.44700 0.39982I
a = 0.407711 0.861266I
b = 0.24560 + 1.40926I
13.3854 + 7.8624I 6.65538 4.81795I
u = 0.92749 + 1.66068I
a = 0.655993 0.321210I
b = 0.074998 + 1.387310I
16.9219 0.9403I 9.61641 + 0.21990I
u = 0.92749 1.66068I
a = 0.655993 + 0.321210I
b = 0.074998 1.387310I
16.9219 + 0.9403I 9.61641 0.21990I
24
VI. I
u
6
= hb + u, u
5
+ 3u
3
+ a + 3u, u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
u
5
3u
3
3u
u
a
8
=
u
5
3u
3
4u
u
a
6
=
u
3
+ u
2
2u
u
2
a
3
=
2u
4
3u
2
2u 1
u
5
u
4
+ 2u
3
2u
2
u 1
a
12
=
u
3
+ u
2
+ u + 2
u
4
2u
2
a
10
=
u
3
+ 1
u
5
u
3
a
7
=
u
3
3u 1
u
4
+ u
3
+ 3u
2
+ u + 1
a
11
=
u
5
+ 3u
3
+ u
2
+ 2u + 2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
u
4
8u
3
3u
2
7u + 2
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
6
+ 3u
4
u
3
+ 3u
2
2u + 1
c
2
, c
10
u
6
3u
5
+ 3u
4
3u
3
+ 4u
2
2u + 1
c
3
u
6
u
5
+ u
4
u
3
+ 10u
2
+ 8u + 5
c
4
, c
8
u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1
c
6
u
6
+ 4u
5
+ 5u
4
+ 2u
3
+ 3u
2
+ 6u + 4
c
7
, c
11
u
6
2u
4
u
3
+ 3u
2
+ 3u + 1
c
9
u
6
3u
5
+ 6u
4
10u
3
+ 11u
2
8u + 4
c
12
u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
y
6
+ 6y
5
+ 15y
4
+ 19y
3
+ 11y
2
+ 2y + 1
c
2
, c
10
y
6
3y
5
y
4
+ 5y
3
+ 10y
2
+ 4y + 1
c
3
y
6
+ y
5
+ 19y
4
+ 45y
3
+ 126y
2
+ 36y + 25
c
6
y
6
6y
5
+ 15y
4
14y
3
+ 25y
2
12y + 16
c
7
, c
11
y
6
4y
5
+ 10y
4
11y
3
+ 11y
2
3y + 1
c
9
, c
12
y
6
+ 3y
5
2y
4
8y
3
+ 9y
2
+ 24y + 16
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.490990 + 1.225090I
a = 1.022090 + 0.499718I
b = 0.490990 1.225090I
13.51720 2.21119I 7.59544 + 2.41868I
u = 0.490990 1.225090I
a = 1.022090 0.499718I
b = 0.490990 + 1.225090I
13.51720 + 2.21119I 7.59544 2.41868I
u = 0.087695 + 1.321290I
a = 0.211862 0.985256I
b = 0.087695 1.321290I
4.04340 + 1.92846I 5.16582 2.69980I
u = 0.087695 1.321290I
a = 0.211862 + 0.985256I
b = 0.087695 + 1.321290I
4.04340 1.92846I 5.16582 + 2.69980I
u = 0.403296 + 0.405883I
a = 0.76605 1.56714I
b = 0.403296 0.405883I
0.533692 0.482626I 3.73874 2.77770I
u = 0.403296 0.405883I
a = 0.76605 + 1.56714I
b = 0.403296 + 0.405883I
0.533692 + 0.482626I 3.73874 + 2.77770I
28
VII. I
u
7
= h−u
3
+ b 2u 1, a + 1, u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
1
u
3
+ 2u + 1
a
8
=
u
3
+ 2u
u
3
+ 2u + 1
a
6
=
u
4
+ u
2
u
4
+ u
3
+ u
2
+ 2u
a
3
=
u
5
+ 2u
3
+ 1
u
4
+ u
2
u
a
12
=
u
u
4
2u
2
a
10
=
u
2
1
u
5
+ 3u
3
+ 2u + 1
a
7
=
0
u
2
1
a
11
=
u
5
u
4
2u
3
3u
2
u 1
u
4
3u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
u
4
8u
3
3u
2
7u + 2
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
6
+ 3u
4
u
3
+ 3u
2
2u + 1
c
2
u
6
+ 4u
5
+ 5u
4
+ 2u
3
+ 3u
2
+ 6u + 4
c
3
, c
7
u
6
2u
4
u
3
+ 3u
2
+ 3u + 1
c
4
, c
12
u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1
c
5
u
6
3u
5
+ 6u
4
10u
3
+ 11u
2
8u + 4
c
6
, c
10
u
6
3u
5
+ 3u
4
3u
3
+ 4u
2
2u + 1
c
8
u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4
c
11
u
6
u
5
+ u
4
u
3
+ 10u
2
+ 8u + 5
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
c
12
y
6
+ 6y
5
+ 15y
4
+ 19y
3
+ 11y
2
+ 2y + 1
c
2
y
6
6y
5
+ 15y
4
14y
3
+ 25y
2
12y + 16
c
3
, c
7
y
6
4y
5
+ 10y
4
11y
3
+ 11y
2
3y + 1
c
5
, c
8
y
6
+ 3y
5
2y
4
8y
3
+ 9y
2
+ 24y + 16
c
6
, c
10
y
6
3y
5
y
4
+ 5y
3
+ 10y
2
+ 4y + 1
c
11
y
6
+ y
5
+ 19y
4
+ 45y
3
+ 126y
2
+ 36y + 25
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.490990 + 1.225090I
a = 1.00000
b = 0.11037 + 1.49751I
13.51720 2.21119I 7.59544 + 2.41868I
u = 0.490990 1.225090I
a = 1.00000
b = 0.11037 1.49751I
13.51720 + 2.21119I 7.59544 2.41868I
u = 0.087695 + 1.321290I
a = 1.00000
b = 1.283230 + 0.366334I
4.04340 + 1.92846I 5.16582 2.69980I
u = 0.087695 1.321290I
a = 1.00000
b = 1.283230 0.366334I
4.04340 1.92846I 5.16582 + 2.69980I
u = 0.403296 + 0.405883I
a = 1.00000
b = 0.327132 + 0.942948I
0.533692 0.482626I 3.73874 2.77770I
u = 0.403296 0.405883I
a = 1.00000
b = 0.327132 0.942948I
0.533692 + 0.482626I 3.73874 + 2.77770I
32
VIII. I
u
8
= h−u
5
u
4
4u
3
6u
2
+ 4b 7u 6, 3u
5
+ 7u
4
+ 16u
3
+ 22u
2
+
8a + 21u + 10, u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
3
8
u
5
7
8
u
4
+ ···
21
8
u
5
4
1
4
u
5
+
1
4
u
4
+ ··· +
7
4
u +
3
2
a
8
=
1
8
u
5
5
8
u
4
+ ···
7
8
u +
1
4
1
4
u
5
+
1
4
u
4
+ ··· +
7
4
u +
3
2
a
6
=
1
8
u
5
1
8
u
4
+ ··· +
9
8
u +
7
4
1
4
u
5
1
4
u
4
+ ··· +
1
4
u
1
2
a
3
=
1
8
u
5
5
8
u
4
+ ···
15
8
u
3
4
1
4
u
5
1
4
u
4
+ ··· +
1
4
u +
1
2
a
12
=
1
8
u
5
+
1
8
u
4
+ ··· +
7
8
u +
5
4
1
4
u
5
1
4
u
4
+ ··· +
5
4
u
1
2
a
10
=
1
8
u
5
+
1
8
u
4
+ ···
1
8
u +
1
4
3
4
u
5
3
4
u
4
+ ···
5
4
u
3
2
a
7
=
3
8
u
5
+
3
8
u
4
+ ··· +
21
8
u +
11
4
7
4
u
5
15
4
u
4
+ ···
29
4
u
11
2
a
11
=
5
8
u
5
+
13
8
u
4
+ ··· +
35
8
u +
9
4
3
4
u
5
3
4
u
4
+ ···
1
4
u
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
+ 5u
4
+ 9u
3
+ 12u
2
+ 11u + 10
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
3u
5
+ 6u
4
10u
3
+ 11u
2
8u + 4
c
2
, c
6
u
6
3u
5
+ 3u
4
3u
3
+ 4u
2
2u + 1
c
3
, c
11
u
6
2u
4
u
3
+ 3u
2
+ 3u + 1
c
4
u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4
c
5
, c
9
u
6
+ 3u
4
u
3
+ 3u
2
2u + 1
c
7
u
6
u
5
+ u
4
u
3
+ 10u
2
+ 8u + 5
c
8
, c
12
u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1
c
10
u
6
+ 4u
5
+ 5u
4
+ 2u
3
+ 3u
2
+ 6u + 4
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
6
+ 3y
5
2y
4
8y
3
+ 9y
2
+ 24y + 16
c
2
, c
6
y
6
3y
5
y
4
+ 5y
3
+ 10y
2
+ 4y + 1
c
3
, c
11
y
6
4y
5
+ 10y
4
11y
3
+ 11y
2
3y + 1
c
5
, c
8
, c
9
c
12
y
6
+ 6y
5
+ 15y
4
+ 19y
3
+ 11y
2
+ 2y + 1
c
7
y
6
+ y
5
+ 19y
4
+ 45y
3
+ 126y
2
+ 36y + 25
c
10
y
6
6y
5
+ 15y
4
14y
3
+ 25y
2
12y + 16
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.327132 + 0.942948I
a = 0.251761 0.515038I
b = 0.403296 + 0.405883I
0.533692 + 0.482626I 3.73874 + 2.77770I
u = 0.327132 0.942948I
a = 0.251761 + 0.515038I
b = 0.403296 0.405883I
0.533692 0.482626I 3.73874 2.77770I
u = 1.283230 + 0.366334I
a = 0.208605 0.970108I
b = 0.087695 + 1.321290I
4.04340 1.92846I 5.16582 + 2.69980I
u = 1.283230 0.366334I
a = 0.208605 + 0.970108I
b = 0.087695 1.321290I
4.04340 + 1.92846I 5.16582 2.69980I
u = 0.11037 + 1.49751I
a = 0.789634 + 0.386067I
b = 0.490990 + 1.225090I
13.51720 + 2.21119I 7.59544 2.41868I
u = 0.11037 1.49751I
a = 0.789634 0.386067I
b = 0.490990 1.225090I
13.51720 2.21119I 7.59544 + 2.41868I
36
IX. I
u
9
= hu
5
+ u
3
2au + 2u
2
+ 2b 3u + 1, u
5
a + 25u
5
+ · · · + 9a +
141, u
6
+ u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ 6u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
a
1
2
u
5
1
2
u
3
+ ··· +
3
2
u
1
2
a
8
=
1
2
u
5
1
2
u
3
+ ··· + a
1
2
1
2
u
5
1
2
u
3
+ ··· +
3
2
u
1
2
a
6
=
1
2
u
5
a +
5
2
u
5
+ ··· +
1
2
a +
25
2
1
2
u
5
a + u
4
a + ··· +
1
2
a 1
a
3
=
u
5
a 2u
5
+ ··· + 2a 14
u
4
a +
1
2
u
5
+ ··· +
3
2
u +
1
2
a
12
=
1
2
u
5
a +
5
2
u
5
+ ··· +
1
2
a +
25
2
1
2
u
5
u
4
+ ···
3
2
u
5
2
a
10
=
u
4
a +
3
2
u
5
+ ··· +
13
2
u +
21
2
1
2
u
5
a
1
2
u
5
+ ··· +
1
2
a
1
2
a
7
=
u
4
a +
5
2
u
5
+ ··· +
11
2
u +
25
2
1
2
u
5
a
3
2
u
3
a + ···
1
2
a 2
a
11
=
1
2
u
5
a + 2u
5
+ ··· +
1
2
a + 12
u
5
a
1
2
u
5
+ ···
7
2
u
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
(u
6
+ u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ 6u + 1)
2
c
2
, c
6
, c
10
(u
6
+ u
5
3u
4
u
3
+ u
2
10u 5)
2
c
3
, c
7
, c
11
(u
6
u
5
4u
4
+ 11u
3
13u + 11)
2
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
(y
6
+ 5y
5
+ 5y
4
17y
3
45y
2
30y + 1)
2
c
2
, c
6
, c
10
(y
6
7y
5
+ 13y
4
+ 3y
3
+ 11y
2
110y + 25)
2
c
3
, c
7
, c
11
(y
6
9y
5
+ 38y
4
125y
3
+ 198y
2
169y + 121)
2
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.074296 + 1.332720I
a = 0.993804 + 0.111150I
b = 1.46944
4.27683 6.00000
u = 0.074296 + 1.332720I
a = 0.061277 + 1.099180I
b = 0.074296 + 1.332720I
4.27683 6.00000
u = 0.074296 1.332720I
a = 0.993804 0.111150I
b = 1.46944
4.27683 6.00000
u = 0.074296 1.332720I
a = 0.061277 1.099180I
b = 0.074296 1.332720I
4.27683 6.00000
u = 0.39818 + 1.40835I
a = 0.851965 0.523598I
b = 0.178322
12.1725 6.00000
u = 0.39818 + 1.40835I
a = 0.0331482 + 0.1172450I
b = 0.39818 + 1.40835I
12.1725 6.00000
u = 0.39818 1.40835I
a = 0.851965 + 0.523598I
b = 0.178322
12.1725 6.00000
u = 0.39818 1.40835I
a = 0.0331482 0.1172450I
b = 0.39818 1.40835I
12.1725 6.00000
u = 1.46944
a = 0.050561 + 0.906954I
b = 0.074296 1.332720I
4.27683 6.00000
u = 1.46944
a = 0.050561 0.906954I
b = 0.074296 + 1.332720I
4.27683 6.00000
40
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.178322
a = 2.23292 + 7.89784I
b = 0.39818 1.40835I
12.1725 6.00000
u = 0.178322
a = 2.23292 7.89784I
b = 0.39818 + 1.40835I
12.1725 6.00000
41
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
9
(u
6
+ 3u
4
u
3
+ 3u
2
2u + 1)
2
· (u
6
3u
5
+ 6u
4
10u
3
+ 11u
2
8u + 4)
· (u
6
u
5
+ 3u
4
u
3
+ 2u
2
u + 1)(u
6
+ u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ 6u + 1)
2
· (u
7
2u
6
+ ··· 3u
2
1)(u
14
7u
13
+ ··· 16u + 4)
· (u
14
+ u
13
+ ··· + 4u + 1)
2
c
2
, c
6
, c
10
(u
6
3u
5
+ 3u
4
3u
3
+ 4u
2
2u + 1)
2
· (u
6
+ u
5
3u
4
u
3
+ u
2
10u 5)
2
· (u
6
+ 4u
5
+ ··· + 6u + 4)(u
6
+ 4u
5
+ 5u
4
+ 3u
3
+ 2u
2
+ 1)
· (u
7
5u
6
+ 7u
5
3u
3
2u
2
+ u 1)(u
14
8u
13
+ ··· 100u + 52)
· (u
14
+ 4u
13
+ ··· 3u
2
+ 1)
2
c
3
, c
7
, c
11
(u
6
2u
4
u
3
+ 3u
2
+ 3u + 1)
2
(u
6
u
5
4u
4
+ 11u
3
13u + 11)
2
· (u
6
u
5
+ u
4
u
3
+ 10u
2
+ 8u + 5)(u
6
+ 2u
5
u
4
3u
3
+ u
2
u + 2)
· (u
7
+ 6u
6
+ 15u
5
+ 17u
4
+ 7u
3
3u
2
2u + 2)
· ((u
14
4u
13
+ ··· 27u + 7)
2
)(u
14
+ 14u
13
+ ··· + 384u + 64)
c
4
, c
8
, c
12
(u
6
+ 3u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
(u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
+ u + 1)
· (u
6
+ u
5
+ 3u
4
+ 5u
3
+ 3u
2
+ 6u + 1)
2
· (u
6
+ 3u
5
+ 6u
4
+ 10u
3
+ 11u
2
+ 8u + 4)
· (u
7
2u
6
+ ··· 3u
2
1)(u
14
7u
13
+ ··· 16u + 4)
· (u
14
+ u
13
+ ··· + 4u + 1)
2
42
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
, c
12
(y
6
+ 3y
5
2y
4
8y
3
+ 9y
2
+ 24y + 16)
· (y
6
+ 5y
5
+ 5y
4
17y
3
45y
2
30y + 1)
2
· (y
6
+ 5y
5
+ 11y
4
+ 11y
3
+ 8y
2
+ 3y + 1)
· (y
6
+ 6y
5
+ 15y
4
+ 19y
3
+ 11y
2
+ 2y + 1)
2
· (y
7
+ 8y
6
+ 26y
5
+ 36y
4
+ 9y
3
21y
2
6y 1)
· (y
14
+ 7y
13
+ ··· + 80y + 16)(y
14
+ 15y
13
+ ··· 8y + 1)
2
c
2
, c
6
, c
10
(y
6
7y
5
+ 13y
4
+ 3y
3
+ 11y
2
110y + 25)
2
· (y
6
6y
5
+ 5y
4
+ 13y
3
+ 14y
2
+ 4y + 1)
· (y
6
6y
5
+ 15y
4
14y
3
+ 25y
2
12y + 16)
· (y
6
3y
5
y
4
+ 5y
3
+ 10y
2
+ 4y + 1)
2
· (y
7
11y
6
+ 43y
5
60y
4
+ 13y
3
10y
2
3y 1)
· ((y
14
22y
13
+ ··· 6y + 1)
2
)(y
14
14y
13
+ ··· + 6016y + 2704)
c
3
, c
7
, c
11
(y
6
9y
5
+ 38y
4
125y
3
+ 198y
2
169y + 121)
2
· (y
6
6y
5
+ 15y
4
3y
3
9y
2
+ 3y + 4)
· (y
6
4y
5
+ 10y
4
11y
3
+ 11y
2
3y + 1)
2
· (y
6
+ y
5
+ 19y
4
+ 45y
3
+ 126y
2
+ 36y + 25)
· (y
7
6y
6
+ 35y
5
47y
4
+ 67y
3
105y
2
+ 16y 4)
· ((y
14
16y
13
+ ··· + 69y + 49)
2
)(y
14
2y
13
+ ··· + 53248y + 4096)
43