12n
0846
(K12n
0846
)
A knot diagram
1
Linearized knot diagam
4 10 11 10 1 12 3 4 1 8 7 6
Solving Sequence
7,11 4,12
3 8 6 1 5 10 2 9
c
11
c
3
c
7
c
6
c
12
c
5
c
10
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5u
21
+ 43u
20
+ ··· + 8b + 200, 15u
21
+ 129u
20
+ ··· + 16a + 272, u
22
9u
21
+ ··· 176u + 16i
I
u
2
= hu
3
a u
3
+ 3au 2u
2
+ 2b + a 3u 5, 3u
3
a + 2u
2
a + u
3
+ a
2
+ 8au 2u
2
+ 3a + 2u 2,
u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
3
= hu
10
+ 7u
8
+ 17u
6
u
5
+ 17u
4
2u
3
+ 7u
2
+ b + u + 1,
u
13
10u
11
2u
10
37u
9
13u
8
61u
7
29u
6
39u
5
30u
4
u
3
19u
2
+ 2a + 2u 1,
u
14
+ 10u
12
+ 39u
10
u
9
+ 75u
8
5u
7
+ 75u
6
6u
5
+ 39u
4
+ u
3
+ 10u
2
+ u + 2i
I
u
4
= h64742a
5
u
3
+ 484970a
4
u
3
+ ··· 385898a 56434, 3a
5
u
3
2a
4
u
3
+ ··· + 8a 9,
u
4
+ u
3
+ 3u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5u
21
+ 43u
20
+ · · · + 8b + 200, 15u
21
+ 129u
20
+ · · · + 16a +
272, u
22
9u
21
+ · · · 176u + 16i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
15
16
u
21
129
16
u
20
+ ··· +
359
2
u 17
5
8
u
21
43
8
u
20
+ ··· + 233u 25
a
12
=
1
u
2
a
3
=
25
16
u
21
215
16
u
20
+ ··· +
825
2
u 42
5
8
u
21
43
8
u
20
+ ··· + 233u 25
a
8
=
1.37500u
21
+ 11.2500u
20
+ ··· 398.750u + 45.5000
9
8
u
21
+
73
8
u
20
+ ···
391
2
u + 22
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
10
=
0.812500u
21
6.81250u
20
+ ··· + 76.7500u 6.50000
1
2
u
21
+
15
4
u
20
+ ···
81
2
u + 5
a
2
=
u
21
67
8
u
20
+ ··· +
837
4
u
41
2
5
8
u
21
45
8
u
20
+ ··· +
477
2
u 26
a
9
=
0.812500u
21
7.06250u
20
+ ··· + 255.250u 27.5000
1
2
u
21
+
19
4
u
20
+ ···
273
2
u + 13
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
21
9
2
u
20
+
53
2
u
19
114u
18
+ 395u
17
1141u
16
+
5639
2
u
15
12093
2
u
14
+ 11359u
13
37595
2
u
12
+
54937
2
u
11
70905
2
u
10
+
80651
2
u
9
40255u
8
+ 35027u
7
26326u
6
+ 16866u
5
18113
2
u
4
+ 3971u
3
1368u
2
+ 346u 54
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
19u
21
+ ··· 640u + 256
c
2
, c
8
u
22
+ u
21
+ ··· 2u + 2
c
3
, c
7
u
22
+ 3u
20
+ ··· u
2
+ 1
c
4
, c
9
u
22
+ 14u
20
+ ··· + u + 1
c
5
, c
6
, c
11
c
12
u
22
+ 9u
21
+ ··· + 176u + 16
c
10
u
22
+ 15u
21
+ ··· + 160u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
17y
21
+ ··· + 483328y + 65536
c
2
, c
8
y
22
+ 3y
21
+ ··· + 32y + 4
c
3
, c
7
y
22
+ 6y
21
+ ··· 2y + 1
c
4
, c
9
y
22
+ 28y
21
+ ··· + 11y + 1
c
5
, c
6
, c
11
c
12
y
22
+ 25y
21
+ ··· 384y + 256
c
10
y
22
+ 7y
21
+ ··· + 2432y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.287964 + 0.924780I
a = 0.34728 + 1.43125I
b = 0.805889 0.918892I
2.14244 3.29575I 1.06475 + 2.74337I
u = 0.287964 0.924780I
a = 0.34728 1.43125I
b = 0.805889 + 0.918892I
2.14244 + 3.29575I 1.06475 2.74337I
u = 0.927630 + 0.184659I
a = 0.129761 + 0.188778I
b = 0.777225 + 0.767673I
6.83184 + 5.48292I 4.03618 4.85229I
u = 0.927630 0.184659I
a = 0.129761 0.188778I
b = 0.777225 0.767673I
6.83184 5.48292I 4.03618 + 4.85229I
u = 0.842891 + 0.639931I
a = 0.429405 0.313332I
b = 0.187769 + 0.832828I
2.36000 2.86683I 3.02711 + 5.17659I
u = 0.842891 0.639931I
a = 0.429405 + 0.313332I
b = 0.187769 0.832828I
2.36000 + 2.86683I 3.02711 5.17659I
u = 0.702570 + 0.819082I
a = 0.363866 1.106770I
b = 0.97246 + 1.06574I
4.90801 10.80840I 1.85897 + 7.63550I
u = 0.702570 0.819082I
a = 0.363866 + 1.106770I
b = 0.97246 1.06574I
4.90801 + 10.80840I 1.85897 7.63550I
u = 0.117025 + 0.707443I
a = 0.327460 + 0.729010I
b = 0.504470 0.045202I
0.65660 1.39506I 0.82058 + 5.90353I
u = 0.117025 0.707443I
a = 0.327460 0.729010I
b = 0.504470 + 0.045202I
0.65660 + 1.39506I 0.82058 5.90353I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.59656 + 1.29686I
a = 0.600773 + 0.160192I
b = 0.356754 0.547531I
2.42718 + 0.16938I 2.49026 5.93197I
u = 0.59656 1.29686I
a = 0.600773 0.160192I
b = 0.356754 + 0.547531I
2.42718 0.16938I 2.49026 + 5.93197I
u = 0.454810 + 0.112434I
a = 0.910049 + 0.178219I
b = 0.626422 + 0.465538I
1.041380 0.734179I 6.66165 + 2.13353I
u = 0.454810 0.112434I
a = 0.910049 0.178219I
b = 0.626422 0.465538I
1.041380 + 0.734179I 6.66165 2.13353I
u = 0.25923 + 1.61438I
a = 0.255394 + 1.262780I
b = 0.450728 1.096960I
5.16479 6.92628I 2.76500 + 4.70851I
u = 0.25923 1.61438I
a = 0.255394 1.262780I
b = 0.450728 + 1.096960I
5.16479 + 6.92628I 2.76500 4.70851I
u = 0.22193 + 1.65185I
a = 0.18340 + 1.86093I
b = 1.06261 1.33577I
3.3965 14.3712I 0.70200 + 6.98452I
u = 0.22193 1.65185I
a = 0.18340 1.86093I
b = 1.06261 + 1.33577I
3.3965 + 14.3712I 0.70200 6.98452I
u = 0.07299 + 1.69387I
a = 0.25150 1.73742I
b = 0.97828 + 1.19120I
11.37540 4.70341I 1.53492 1.20569I
u = 0.07299 1.69387I
a = 0.25150 + 1.73742I
b = 0.97828 1.19120I
11.37540 + 4.70341I 1.53492 + 1.20569I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.01640 + 1.72547I
a = 0.138986 0.857092I
b = 0.479233 + 0.582586I
9.63715 1.43342I 1.85153 + 4.64223I
u = 0.01640 1.72547I
a = 0.138986 + 0.857092I
b = 0.479233 0.582586I
9.63715 + 1.43342I 1.85153 4.64223I
7
II. I
u
2
= hu
3
a u
3
+ 3au 2u
2
+ 2b + a 3u 5, 3u
3
a + u
3
+ · · · + 3a
2, u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
a
1
2
u
3
a +
1
2
u
3
+ ···
1
2
a +
5
2
a
12
=
1
u
2
a
3
=
1
2
u
3
a +
1
2
u
3
+ ··· +
1
2
a +
5
2
1
2
u
3
a +
1
2
u
3
+ ···
1
2
a +
5
2
a
8
=
1
2
u
3
a
3
2
u
3
+ ···
5
2
a
5
2
u
3
+ u
2
+ 2u + 1
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
3
u
2
2u 1
a
5
=
u
3
+ 2u
u
3
+ u
2
+ 2u + 1
a
10
=
3
2
u
3
a
1
2
u
3
+ ···
3
2
a +
3
2
u
a
2
=
u
2
a + u
2
+ 2a + 1
3
2
u
3
a
1
2
u
3
+ ···
3
2
a +
7
2
a
9
=
1
2
u
3
a
3
2
u
3
+ ···
3
2
a
3
2
1
2
u
3
a +
3
2
u
3
+ ··· +
3
2
a +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
8u
2
24u 14
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 3u
3
+ u
2
2u + 1)
2
c
2
, c
8
u
8
+ 2u
7
+ 3u
6
4u
5
3u
4
12u
3
+ 18u
2
14u + 41
c
3
, c
7
u
8
+ 2u
7
+ 3u
6
+ 5u
5
+ 15u
4
+ 12u
3
+ u
2
11u + 4
c
4
, c
9
u
8
2u
7
+ 5u
6
13u
5
+ 15u
4
26u
3
+ 29u
2
15u + 22
c
5
, c
6
, c
11
c
12
(u
4
u
3
+ 3u
2
2u + 1)
2
c
10
(u
4
u
3
+ u
2
+ 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
7y
3
+ 15y
2
2y + 1)
2
c
2
, c
8
y
8
+ 2y
7
+ 19y
6
+ 50y
5
+ 159y
4
118y
3
258y
2
+ 1280y + 1681
c
3
, c
7
y
8
+ 2y
7
+ 19y
6
+ 19y
5
+ 163y
4
+ 20y
3
+ 385y
2
113y + 16
c
4
, c
9
y
8
+ 6y
7
+ 3y
6
65y
5
177y
4
+ 24y
3
+ 721y
2
+ 1051y + 484
c
5
, c
6
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.771008 0.709655I
b = 1.37255 + 1.06120I
5.35681 + 2.83021I 5.65348 9.81749I
u = 0.395123 + 0.506844I
a = 0.40506 2.86559I
b = 0.415863 + 0.165981I
5.35681 + 2.83021I 5.65348 9.81749I
u = 0.395123 0.506844I
a = 0.771008 + 0.709655I
b = 1.37255 1.06120I
5.35681 2.83021I 5.65348 + 9.81749I
u = 0.395123 0.506844I
a = 0.40506 + 2.86559I
b = 0.415863 0.165981I
5.35681 2.83021I 5.65348 + 9.81749I
u = 0.10488 + 1.55249I
a = 0.13089 + 1.50540I
b = 0.955379 0.991300I
8.64668 + 6.32793I 1.65348 5.12960I
u = 0.10488 + 1.55249I
a = 0.23506 2.20215I
b = 0.91206 + 1.63250I
8.64668 + 6.32793I 1.65348 5.12960I
u = 0.10488 1.55249I
a = 0.13089 1.50540I
b = 0.955379 + 0.991300I
8.64668 6.32793I 1.65348 + 5.12960I
u = 0.10488 1.55249I
a = 0.23506 + 2.20215I
b = 0.91206 1.63250I
8.64668 6.32793I 1.65348 + 5.12960I
11
III.
I
u
3
= hu
10
+7u
8
+· · ·+b+1, u
13
10u
11
+· · ·+2a1, u
14
+10u
12
+· · ·+u+2i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
1
2
u
13
+ 5u
11
+ ··· u +
1
2
u
10
7u
8
17u
6
+ u
5
17u
4
+ 2u
3
7u
2
u 1
a
12
=
1
u
2
a
3
=
1
2
u
13
+ 5u
11
+ ··· 2u
1
2
u
10
7u
8
17u
6
+ u
5
17u
4
+ 2u
3
7u
2
u 1
a
8
=
1
2
u
13
u
12
+ ··· 3u
7
2
u
13
9u
11
+ ··· 2u + 1
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
10
=
1
2
u
13
u
12
+ ··· u
1
2
u
13
9u
11
31u
9
+ u
8
50u
7
+ 5u
6
36u
5
+ 7u
4
8u
3
+ 2u
2
+ 1
a
2
=
1
2
u
13
5u
11
+ ··· 8u +
3
2
u
9
+ 6u
7
+ 12u
5
+ 9u
3
+ u
2
+ 2u + 1
a
9
=
1
2
u
13
+ 4u
11
+ ··· 2u +
1
2
u
13
u
12
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
13
+ 2u
12
+ 8u
11
+ 16u
10
+ 23u
9
+ 45u
8
+ 23u
7
+ 50u
6
9u
5
+ 14u
4
24u
3
4u
2
4u
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
10u
13
+ ··· + 16u + 1
c
2
, c
8
u
14
u
13
+ ··· 11u + 12
c
3
, c
7
u
14
+ 2u
12
+ ··· 2u + 1
c
4
, c
9
u
14
+ 5u
12
+ ··· + u + 1
c
5
, c
6
u
14
+ 10u
12
+ ··· u + 2
c
10
u
14
4u
13
+ ··· + 5u
2
+ 1
c
11
, c
12
u
14
+ 10u
12
+ ··· + u + 2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
10y
13
+ ··· 116y + 1
c
2
, c
8
y
14
+ 5y
13
+ ··· 169y + 144
c
3
, c
7
y
14
+ 4y
13
+ ··· 2y + 1
c
4
, c
9
y
14
+ 10y
13
+ ··· 9y + 1
c
5
, c
6
, c
11
c
12
y
14
+ 20y
13
+ ··· + 39y + 4
c
10
y
14
+ 6y
13
+ ··· + 10y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.216588 + 0.766661I
a = 0.79945 + 1.58663I
b = 0.734213 1.062220I
3.12382 4.21919I 5.40196 + 5.63555I
u = 0.216588 0.766661I
a = 0.79945 1.58663I
b = 0.734213 + 1.062220I
3.12382 + 4.21919I 5.40196 5.63555I
u = 0.378992 + 1.158350I
a = 0.707988 + 0.209626I
b = 0.481839 + 0.132352I
2.78436 + 0.58627I 2.37749 2.49068I
u = 0.378992 1.158350I
a = 0.707988 0.209626I
b = 0.481839 0.132352I
2.78436 0.58627I 2.37749 + 2.49068I
u = 0.370851 + 0.545702I
a = 1.071550 0.239968I
b = 0.288392 0.820734I
2.25383 + 2.26223I 8.00771 5.34861I
u = 0.370851 0.545702I
a = 1.071550 + 0.239968I
b = 0.288392 + 0.820734I
2.25383 2.26223I 8.00771 + 5.34861I
u = 0.304789 + 0.397142I
a = 0.53814 2.60756I
b = 0.717374 + 0.663663I
5.08623 + 1.96121I 1.63137 0.59067I
u = 0.304789 0.397142I
a = 0.53814 + 2.60756I
b = 0.717374 0.663663I
5.08623 1.96121I 1.63137 + 0.59067I
u = 0.08871 + 1.55131I
a = 0.42730 + 1.64814I
b = 1.009610 0.964029I
1.73020 + 3.34530I 1.14043 1.01217I
u = 0.08871 1.55131I
a = 0.42730 1.64814I
b = 1.009610 + 0.964029I
1.73020 3.34530I 1.14043 + 1.01217I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.05772 + 1.67208I
a = 0.19555 1.81258I
b = 0.96827 + 1.26017I
11.81410 5.26341I 5.92578 + 7.14568I
u = 0.05772 1.67208I
a = 0.19555 + 1.81258I
b = 0.96827 1.26017I
11.81410 + 5.26341I 5.92578 7.14568I
u = 0.12734 + 1.69142I
a = 0.219396 0.895572I
b = 0.251625 + 0.782266I
10.33280 + 0.06735I 7.31384 0.14644I
u = 0.12734 1.69142I
a = 0.219396 + 0.895572I
b = 0.251625 0.782266I
10.33280 0.06735I 7.31384 + 0.14644I
16
IV. I
u
4
= h6.47 × 10
4
a
5
u
3
+ 4.85 × 10
5
a
4
u
3
+ · · · 3.86 × 10
5
a 5.64 ×
10
4
, 3a
5
u
3
2a
4
u
3
+ · · · + 8a 9, u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
4
=
a
0.0689494a
5
u
3
0.516487a
4
u
3
+ ··· + 0.410977a + 0.0601015
a
12
=
1
u
2
a
3
=
0.0689494a
5
u
3
0.516487a
4
u
3
+ ··· + 1.41098a + 0.0601015
0.0689494a
5
u
3
0.516487a
4
u
3
+ ··· + 0.410977a + 0.0601015
a
8
=
0.140805a
5
u
3
0.346580a
4
u
3
+ ··· 0.706629a 1.69831
0.160361a
5
u
3
+ 0.183546a
4
u
3
+ ··· 0.869155a 1.38070
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
3
u
2
2u 1
a
5
=
u
3
+ 2u
u
3
+ u
2
+ 2u + 1
a
10
=
0.000760401a
5
u
3
0.631549a
4
u
3
+ ··· 1.72584a + 1.80502
0.122303a
5
u
3
0.0408039a
4
u
3
+ ··· + 0.836778a 0.878400
a
2
=
0.0571962a
5
u
3
+ 0.310935a
4
u
3
+ ··· + 1.43692a 0.163214
0.0409488a
5
u
3
0.886450a
4
u
3
+ ··· 0.599105a 0.139767
a
9
=
0.177120a
5
u
3
+ 0.152318a
4
u
3
+ ··· + 1.00470a + 1.79206
0.101777a
5
u
3
0.569117a
4
u
3
+ ··· 1.15970a 1.37536
(ii) Obstruction class = 1
(iii) Cusp Shapes =
71470
469489
a
5
u
3
268064
469489
a
4
u
3
+ ··· +
60802
469489
a
452394
469489
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 3u
3
+ u
2
2u + 1)
6
c
2
, c
8
u
24
3u
23
+ ··· + 8u + 8
c
3
, c
7
u
24
5u
23
+ ··· 4u + 8
c
4
, c
9
u
24
+ u
23
+ ··· 32u + 8
c
5
, c
6
, c
11
c
12
(u
4
u
3
+ 3u
2
2u + 1)
6
c
10
(u
4
u
3
+ u
2
+ 1)
6
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
7y
3
+ 15y
2
2y + 1)
6
c
2
, c
8
y
24
+ 9y
23
+ ··· + 1696y + 64
c
3
, c
7
y
24
+ 5y
23
+ ··· + 1136y + 64
c
4
, c
9
y
24
+ 21y
23
+ ··· + 3808y + 64
c
5
, c
6
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
6
c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
6
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.637870 + 0.739647I
b = 0.115226 + 0.635056I
1.64493 1.74886I 2.00000 2.34394I
u = 0.395123 + 0.506844I
a = 1.159350 + 0.059125I
b = 0.490251 0.808077I
1.64493 1.74886I 2.00000 2.34394I
u = 0.395123 + 0.506844I
a = 1.27325 0.74075I
b = 0.957415 + 0.141715I
5.35681 5.65348 + 0.I
u = 0.395123 + 0.506844I
a = 0.86187 + 1.25769I
b = 0.76295 1.20476I
1.64493 + 4.57907I 2.00000 7.47354I
u = 0.395123 + 0.506844I
a = 1.53954 0.58632I
b = 0.668828 + 0.802618I
1.64493 + 4.57907I 2.00000 7.47354I
u = 0.395123 + 0.506844I
a = 0.16426 2.67779I
b = 0.57777 + 1.36729I
5.35681 5.65348 + 0.I
u = 0.395123 0.506844I
a = 0.637870 0.739647I
b = 0.115226 0.635056I
1.64493 + 1.74886I 2.00000 + 2.34394I
u = 0.395123 0.506844I
a = 1.159350 0.059125I
b = 0.490251 + 0.808077I
1.64493 + 1.74886I 2.00000 + 2.34394I
u = 0.395123 0.506844I
a = 1.27325 + 0.74075I
b = 0.957415 0.141715I
5.35681 5.65348 + 0.I
u = 0.395123 0.506844I
a = 0.86187 1.25769I
b = 0.76295 + 1.20476I
1.64493 4.57907I 2.00000 + 7.47354I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.395123 0.506844I
a = 1.53954 + 0.58632I
b = 0.668828 0.802618I
1.64493 4.57907I 2.00000 + 7.47354I
u = 0.395123 0.506844I
a = 0.16426 + 2.67779I
b = 0.57777 1.36729I
5.35681 5.65348 + 0.I
u = 0.10488 + 1.55249I
a = 0.076529 + 0.814337I
b = 0.668148 0.834125I
8.64668 1.65348 + 0.I
u = 0.10488 + 1.55249I
a = 0.53246 1.31285I
b = 0.031326 + 0.920559I
8.64668 1.65348 + 0.I
u = 0.10488 + 1.55249I
a = 0.083538 + 0.334406I
b = 1.249390 0.253465I
1.64493 + 1.74886I 2.00000 + 2.34394I
u = 0.10488 + 1.55249I
a = 0.55405 + 1.75382I
b = 0.023049 0.425939I
1.64493 + 4.57907I 2.00000 7.47354I
u = 0.10488 + 1.55249I
a = 1.73172 + 0.96731I
b = 2.00583 0.96364I
1.64493 + 4.57907I 2.00000 7.47354I
u = 0.10488 + 1.55249I
a = 0.10502 + 2.63055I
b = 0.00339 1.81847I
1.64493 + 1.74886I 2.00000 + 2.34394I
u = 0.10488 1.55249I
a = 0.076529 0.814337I
b = 0.668148 + 0.834125I
8.64668 1.65348 + 0.I
u = 0.10488 1.55249I
a = 0.53246 + 1.31285I
b = 0.031326 0.920559I
8.64668 1.65348 + 0.I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.10488 1.55249I
a = 0.083538 0.334406I
b = 1.249390 + 0.253465I
1.64493 1.74886I 2.00000 2.34394I
u = 0.10488 1.55249I
a = 0.55405 1.75382I
b = 0.023049 + 0.425939I
1.64493 4.57907I 2.00000 + 7.47354I
u = 0.10488 1.55249I
a = 1.73172 0.96731I
b = 2.00583 + 0.96364I
1.64493 4.57907I 2.00000 + 7.47354I
u = 0.10488 1.55249I
a = 0.10502 2.63055I
b = 0.00339 + 1.81847I
1.64493 1.74886I 2.00000 2.34394I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
4
+ 3u
3
+ u
2
2u + 1)
8
)(u
14
10u
13
+ ··· + 16u + 1)
· (u
22
19u
21
+ ··· 640u + 256)
c
2
, c
8
(u
8
+ 2u
7
+ 3u
6
4u
5
3u
4
12u
3
+ 18u
2
14u + 41)
· (u
14
u
13
+ ··· 11u + 12)(u
22
+ u
21
+ ··· 2u + 2)
· (u
24
3u
23
+ ··· + 8u + 8)
c
3
, c
7
(u
8
+ 2u
7
+ 3u
6
+ 5u
5
+ 15u
4
+ 12u
3
+ u
2
11u + 4)
· (u
14
+ 2u
12
+ ··· 2u + 1)(u
22
+ 3u
20
+ ··· u
2
+ 1)
· (u
24
5u
23
+ ··· 4u + 8)
c
4
, c
9
(u
8
2u
7
+ 5u
6
13u
5
+ 15u
4
26u
3
+ 29u
2
15u + 22)
· (u
14
+ 5u
12
+ ··· + u + 1)(u
22
+ 14u
20
+ ··· + u + 1)
· (u
24
+ u
23
+ ··· 32u + 8)
c
5
, c
6
((u
4
u
3
+ 3u
2
2u + 1)
8
)(u
14
+ 10u
12
+ ··· u + 2)
· (u
22
+ 9u
21
+ ··· + 176u + 16)
c
10
((u
4
u
3
+ u
2
+ 1)
8
)(u
14
4u
13
+ ··· + 5u
2
+ 1)
· (u
22
+ 15u
21
+ ··· + 160u + 16)
c
11
, c
12
((u
4
u
3
+ 3u
2
2u + 1)
8
)(u
14
+ 10u
12
+ ··· + u + 2)
· (u
22
+ 9u
21
+ ··· + 176u + 16)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
4
7y
3
+ 15y
2
2y + 1)
8
)(y
14
10y
13
+ ··· 116y + 1)
· (y
22
17y
21
+ ··· + 483328y + 65536)
c
2
, c
8
(y
8
+ 2y
7
+ 19y
6
+ 50y
5
+ 159y
4
118y
3
258y
2
+ 1280y + 1681)
· (y
14
+ 5y
13
+ ··· 169y + 144)(y
22
+ 3y
21
+ ··· + 32y + 4)
· (y
24
+ 9y
23
+ ··· + 1696y + 64)
c
3
, c
7
(y
8
+ 2y
7
+ 19y
6
+ 19y
5
+ 163y
4
+ 20y
3
+ 385y
2
113y + 16)
· (y
14
+ 4y
13
+ ··· 2y + 1)(y
22
+ 6y
21
+ ··· 2y + 1)
· (y
24
+ 5y
23
+ ··· + 1136y + 64)
c
4
, c
9
(y
8
+ 6y
7
+ 3y
6
65y
5
177y
4
+ 24y
3
+ 721y
2
+ 1051y + 484)
· (y
14
+ 10y
13
+ ··· 9y + 1)(y
22
+ 28y
21
+ ··· + 11y + 1)
· (y
24
+ 21y
23
+ ··· + 3808y + 64)
c
5
, c
6
, c
11
c
12
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
8
)(y
14
+ 20y
13
+ ··· + 39y + 4)
· (y
22
+ 25y
21
+ ··· 384y + 256)
c
10
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
8
)(y
14
+ 6y
13
+ ··· + 10y + 1)
· (y
22
+ 7y
21
+ ··· + 2432y + 256)
24