12n
0847
(K12n
0847
)
A knot diagram
1
Linearized knot diagam
4 7 8 9 1 12 10 1 2 3 7 6
Solving Sequence
1,5 6,9
4 2 10 8 3 12 7 11
c
5
c
4
c
1
c
9
c
8
c
3
c
12
c
6
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
10
5u
9
28u
8
131u
7
313u
6
576u
5
809u
4
779u
3
575u
2
+ 58b 246u 70,
35u
10
222u
9
+ ··· + 232a 556,
u
11
+ 6u
10
+ 23u
9
+ 62u
8
+ 128u
7
+ 210u
6
+ 269u
5
+ 270u
4
+ 202u
3
+ 108u
2
+ 44u + 8i
I
u
2
= hau + b, 8u
6
a 3u
6
+ ··· + 28a 18, u
7
+ 4u
6
+ 11u
5
+ 20u
4
+ 26u
3
+ 25u
2
+ 14u + 4i
I
u
3
= h−a
3
u + 2a
3
7a
2
u + 5a
2
12au + 6b 9u 9, a
4
2a
3
u + 3a
3
4a
2
u + 3a
2
7au + 2a 2u + 1,
u
2
u + 1i
I
u
4
= h−au + b u, a
2
+ a 2u + 2, u
2
u + 1i
I
u
5
= hu
12
u
11
+ 8u
10
8u
9
+ 25u
8
24u
7
+ 42u
6
36u
5
+ 42u
4
31u
3
+ 22u
2
+ 2b 13u + 5,
5u
15
55u
13
+ ··· + 38a 247, u
16
+ 11u
14
+ 51u
12
+ 134u
10
+ 226u
8
+ 256u
6
+ 191u
4
+ 88u
2
+ 19i
I
u
6
= ha
3
u + a
3
+ a
2
u 5a
2
6au + 3b + 3a + 6u + 3, a
4
+ a
3
u 3a
3
2a
2
u + 2a
2
+ 2au + 2a u 1,
u
2
u + 1i
I
u
7
= h−au + b + u 1, a
2
au 2u + 1, u
2
u + 1i
I
u
8
= hb u + 1, a 1, u
2
u + 1i
I
u
9
= hb + u, a + u, u
2
u + 1i
I
u
10
= hb + u + 1, a + u, u
2
+ u + 1i
I
v
1
= ha, b
2
+ b + 1, v + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
* 11 irreducible components of dim
C
= 0, with total 73 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h3u
10
5u
9
+ · · · + 58b 70, 35u
10
222u
9
+ · · · + 232a
556, u
11
+ 6u
10
+ · · · + 44u + 8i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
9
=
0.150862u
10
+ 0.956897u
9
+ ··· + 6.37931u + 2.39655
0.0517241u
10
+ 0.0862069u
9
+ ··· + 4.24138u + 1.20690
a
4
=
0.314655u
10
+ 1.51724u
9
+ ··· + 9.94828u + 3.74138
0.370690u
10
+ 1.96552u
9
+ ··· + 11.1034u + 2.51724
a
2
=
0.193966u
10
0.801724u
9
+ ··· 1.34483u + 0.775862
0.620690u
10
3.46552u
9
+ ··· 22.1034u 4.51724
a
10
=
0.150862u
10
+ 0.706897u
9
+ ··· + 4.87931u + 1.39655
0.698276u
10
+ 2.58621u
9
+ ··· + 12.2414u + 3.20690
a
8
=
0.150862u
10
+ 0.956897u
9
+ ··· + 6.37931u + 2.39655
0.448276u
10
1.58621u
9
+ ··· + 0.758621u + 0.793103
a
3
=
0.564655u
10
+ 2.76724u
9
+ ··· + 11.4483u + 2.74138
0.620690u
10
+ 3.46552u
9
+ ··· + 32.1034u + 6.51724
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
3
+ 2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
55
58
u
10
162
29
u
9
1217
58
u
8
1588
29
u
7
3216
29
u
6
5073
29
u
5
12583
58
u
4
5972
29
u
3
4159
29
u
2
2124
29
u
702
29
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
11
5u
10
+ ··· + 5u + 7
c
2
, c
4
, c
8
c
10
u
11
+ u
10
+ 6u
9
+ 4u
8
+ 14u
7
+ 4u
6
+ 8u
5
5u
3
3u
2
+ u + 1
c
3
, c
9
u
11
2u
10
+ ··· 9u + 24
c
5
, c
6
, c
11
c
12
u
11
+ 6u
10
+ ··· + 44u + 8
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
11
+ 5y
10
+ ··· 31y 49
c
2
, c
4
, c
8
c
10
y
11
+ 11y
10
+ ··· + 7y 1
c
3
, c
9
y
11
22y
10
+ ··· + 4305y 576
c
5
, c
6
, c
11
c
12
y
11
+ 10y
10
+ ··· + 208y 64
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077559 + 0.704837I
a = 0.121802 0.808314I
b = 0.560282 0.148542I
0.79523 + 1.67374I 1.92464 5.47847I
u = 0.077559 0.704837I
a = 0.121802 + 0.808314I
b = 0.560282 + 0.148542I
0.79523 1.67374I 1.92464 + 5.47847I
u = 1.377920 + 0.101637I
a = 0.324451 + 1.135490I
b = 0.33166 + 1.59759I
11.42710 8.15511I 7.08884 + 4.54839I
u = 1.377920 0.101637I
a = 0.324451 1.135490I
b = 0.33166 1.59759I
11.42710 + 8.15511I 7.08884 4.54839I
u = 0.72850 + 1.42389I
a = 0.649822 + 0.893927I
b = 0.79946 + 1.57650I
7.3754 + 15.4551I 4.41387 7.80880I
u = 0.72850 1.42389I
a = 0.649822 0.893927I
b = 0.79946 1.57650I
7.3754 15.4551I 4.41387 + 7.80880I
u = 0.361176
a = 1.44545
b = 0.522063
1.26726 9.58390
u = 0.08198 + 1.70897I
a = 0.264638 + 0.259315I
b = 0.464855 + 0.430999I
9.26814 + 1.07224I 1.58191 6.79260I
u = 0.08198 1.70897I
a = 0.264638 0.259315I
b = 0.464855 0.430999I
9.26814 1.07224I 1.58191 + 6.79260I
u = 0.71742 + 1.60214I
a = 0.644383 0.371812I
b = 0.133405 1.299140I
6.25408 0.69480I 6.21186 + 0.79724I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.71742 1.60214I
a = 0.644383 + 0.371812I
b = 0.133405 + 1.299140I
6.25408 + 0.69480I 6.21186 0.79724I
7
II. I
u
2
= hau + b, 8u
6
a 3u
6
+ · · · + 28a 18, u
7
+ 4u
6
+ · · · + 14u + 4i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
9
=
a
au
a
4
=
1
2
u
6
a 2u
5
a + ··· 4a +
5
2
1
2
u
6
u
5
+ ··· 2a
3
2
u
a
2
=
1
2
u
6
3
2
u
5
+ ··· a
3
2
1
2
u
6
+ u
5
+ ··· au +
5
2
u
a
10
=
1
2
u
6
a +
1
4
u
6
+ ··· +
21
4
u +
5
2
u
6
a 3u
5
a + ··· 2a 1
a
8
=
a
u
2
a au
a
3
=
1
2
u
5
+ u
4
+ ··· a +
5
2
u
5
a
1
2
u
6
+ ··· au
3
2
u
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
3
+ 2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
6
3u
5
11u
4
21u
3
30u
2
28u 14
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
14
8u
13
+ ··· 21u + 3
c
2
, c
4
, c
8
c
10
u
14
+ 8u
12
+ ··· 3u + 1
c
3
, c
9
(u
7
+ u
6
2u
5
2u
4
u
3
3u
2
1)
2
c
5
, c
6
, c
11
c
12
(u
7
+ 4u
6
+ 11u
5
+ 20u
4
+ 26u
3
+ 25u
2
+ 14u + 4)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
14
+ 2y
13
+ ··· 33y + 9
c
2
, c
4
, c
8
c
10
y
14
+ 16y
13
+ ··· 3y + 1
c
3
, c
9
(y
7
5y
6
+ 6y
5
+ 6y
4
9y
3
13y
2
6y 1)
2
c
5
, c
6
, c
11
c
12
(y
7
+ 6y
6
+ 13y
5
48y
3
57y
2
4y 16)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.532984 + 0.464109I
a = 0.595528 0.213565I
b = 0.218289 0.390217I
0.57333 + 1.84126I 2.97768 3.50098I
u = 0.532984 + 0.464109I
a = 0.58819 1.42915I
b = 0.349784 1.034700I
0.57333 + 1.84126I 2.97768 3.50098I
u = 0.532984 0.464109I
a = 0.595528 + 0.213565I
b = 0.218289 + 0.390217I
0.57333 1.84126I 2.97768 + 3.50098I
u = 0.532984 0.464109I
a = 0.58819 + 1.42915I
b = 0.349784 + 1.034700I
0.57333 1.84126I 2.97768 + 3.50098I
u = 1.33180
a = 0.228400 + 1.212910I
b = 0.30418 + 1.61536I
12.0300 7.93040
u = 1.33180
a = 0.228400 1.212910I
b = 0.30418 1.61536I
12.0300 7.93040
u = 0.11506 + 1.49422I
a = 0.755700 + 0.587068I
b = 0.79026 + 1.19673I
5.82905 + 4.07787I 5.41510 + 4.51647I
u = 0.11506 + 1.49422I
a = 0.095547 0.221715I
b = 0.342285 + 0.117257I
5.82905 + 4.07787I 5.41510 + 4.51647I
u = 0.11506 1.49422I
a = 0.755700 0.587068I
b = 0.79026 1.19673I
5.82905 4.07787I 5.41510 4.51647I
u = 0.11506 1.49422I
a = 0.095547 + 0.221715I
b = 0.342285 0.117257I
5.82905 4.07787I 5.41510 4.51647I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.68606 + 1.48551I
a = 0.668554 0.820572I
b = 0.76030 1.55610I
7.46541 + 7.10242I 5.97220 3.89199I
u = 0.68606 + 1.48551I
a = 0.729428 + 0.430875I
b = 0.139642 + 1.379180I
7.46541 + 7.10242I 5.97220 3.89199I
u = 0.68606 1.48551I
a = 0.668554 + 0.820572I
b = 0.76030 + 1.55610I
7.46541 7.10242I 5.97220 + 3.89199I
u = 0.68606 1.48551I
a = 0.729428 0.430875I
b = 0.139642 1.379180I
7.46541 7.10242I 5.97220 + 3.89199I
12
III.
I
u
3
= h−a
3
u 7a
2
u + · · · + 5a
2
9, 2a
3
u 4a
2
u + · · · + 2a + 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
a
1
6
a
3
u +
7
6
a
2
u + ···
5
6
a
2
+
3
2
a
4
=
1
3
a
3
u +
5
6
a
2
u + ··· + a + 1
1
2
a
3
u + 4a
2
u + ··· a +
3
2
a
2
=
1
6
a
3
u +
7
6
a
2
u + ···
5
6
a
2
1
2
1
2
a
3
u a
2
u + ··· a
1
2
a
10
=
1
2
a
3
3
2
a
2
u + a
2
au a
1
2
u 1
4
3
a
3
u +
4
3
a
2
u + ··· + 4a + 4
a
8
=
a
1
6
a
3
u +
7
6
a
2
u + ··· a +
3
2
a
3
=
2
3
a
3
u +
13
6
a
2
u + ···
4
3
a
2
+ 1
a
3
u a
2
u 2a
2
+ au 3a + u 2
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u 18
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
4
+ u
3
2u + 1)
2
c
2
, c
4
, c
8
c
10
u
8
+ 5u
7
+ 12u
6
+ 20u
5
+ 28u
4
+ 33u
3
+ 36u
2
+ 6u + 3
c
3
, c
9
(u
4
+ 2u
3
3u
2
4u + 7)
2
c
5
, c
6
, c
11
c
12
(u
2
u + 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
4
y
3
+ 6y
2
4y + 1)
2
c
2
, c
4
, c
8
c
10
y
8
y
7
+ 14y
5
+ 274y
4
+ 759y
3
+ 1068y
2
+ 180y + 9
c
3
, c
9
(y
4
10y
3
+ 39y
2
58y + 49)
2
c
5
, c
6
, c
11
c
12
(y
2
+ y + 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.91531 1.09688I
b = 0.87030 1.52885I
3.28987 6.08965I 12.0000 + 10.3923I
u = 0.500000 + 0.866025I
a = 0.293656 0.109216I
b = 2.06972 + 0.74483I
3.28987 6.08965I 12.0000 + 10.3923I
u = 0.500000 + 0.866025I
a = 0.88888 + 1.51813I
b = 0.49226 + 1.34112I
3.28987 6.08965I 12.0000 + 10.3923I
u = 0.500000 + 0.866025I
a = 1.67991 + 1.42001I
b = 0.052244 + 0.308922I
3.28987 6.08965I 12.0000 + 10.3923I
u = 0.500000 0.866025I
a = 0.91531 + 1.09688I
b = 0.87030 + 1.52885I
3.28987 + 6.08965I 12.0000 10.3923I
u = 0.500000 0.866025I
a = 0.293656 + 0.109216I
b = 2.06972 0.74483I
3.28987 + 6.08965I 12.0000 10.3923I
u = 0.500000 0.866025I
a = 0.88888 1.51813I
b = 0.49226 1.34112I
3.28987 + 6.08965I 12.0000 10.3923I
u = 0.500000 0.866025I
a = 1.67991 1.42001I
b = 0.052244 0.308922I
3.28987 + 6.08965I 12.0000 10.3923I
16
IV. I
u
4
= h−au + b u, a
2
+ a 2u + 2, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
a
au + u
a
4
=
1
au a u 1
a
2
=
u
a u + 1
a
10
=
au + a 1
au + a 2u + 2
a
8
=
a
2au a + u
a
3
=
au + a 2u + 1
au + 2
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
+ u + 1)
2
c
2
, c
4
, c
8
c
10
u
4
+ u
3
+ 3u
2
+ 4u + 4
c
3
, c
9
u
4
+ 3u
2
6u + 3
c
5
, c
6
, c
11
c
12
(u
2
u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
(y
2
+ y + 1)
2
c
2
, c
4
, c
8
c
10
y
4
+ 5y
3
+ 9y
2
+ 8y + 16
c
3
, c
9
y
4
+ 6y
3
+ 15y
2
18y + 9
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.254141 + 1.148360I
b = 0.36744 + 1.66030I
6.08965I 0. + 10.39230I
u = 0.500000 + 0.866025I
a = 1.25414 1.14836I
b = 0.867438 0.794273I
6.08965I 0. + 10.39230I
u = 0.500000 0.866025I
a = 0.254141 1.148360I
b = 0.36744 1.66030I
6.08965I 0. 10.39230I
u = 0.500000 0.866025I
a = 1.25414 + 1.14836I
b = 0.867438 + 0.794273I
6.08965I 0. 10.39230I
20
V. I
u
5
= hu
12
u
11
+ · · · + 2b + 5, 5u
15
55u
13
+ · · · + 38a 247, u
16
+
11u
14
+ · · · + 88u
2
+ 19i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
9
=
0.131579u
15
+ 1.44737u
13
+ ··· + 0.578947u + 6.50000
1
2
u
12
+
1
2
u
11
+ ··· +
13
2
u
5
2
a
4
=
0.0789474u
15
0.368421u
13
+ ··· + 6.55263u + 6.50000
1
2
u
14
+
1
2
u
13
+ ··· +
11
2
u +
3
2
a
2
=
0.131579u
15
0.947368u
13
+ ··· + 8.42105u + 9
1
2
u
15
+ u
14
+ ··· +
23
2
u +
5
2
a
10
=
3
38
u
15
+
1
2
u
14
+ ··· +
94
19
u + 12
1
2
u
15
+
1
2
u
14
+ ··· +
7
2
u
3
2
a
8
=
0.131579u
15
+ 1.44737u
13
+ ··· + 0.578947u + 6.50000
1
2
u
13
7
2
u
11
+ ··· + 4u
5
2
a
3
=
0.131579u
15
+ 0.500000u
14
+ ··· + 14.9211u + 11.5000
u
15
+
1
2
u
14
+ ··· +
23
2
u 7
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
3
+ 2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
14
56u
12
216u
10
468u
8
639u
6
555u
4
288u
2
73
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
16
7u
15
+ ··· + u + 1
c
2
, c
4
, c
8
c
10
u
16
u
15
+ ··· 3u + 1
c
3
, c
9
(u
8
4u
6
+ 6u
4
+ 3u
3
2u
2
4u 1)
2
c
5
, c
6
, c
11
c
12
u
16
+ 11u
14
+ 51u
12
+ 134u
10
+ 226u
8
+ 256u
6
+ 191u
4
+ 88u
2
+ 19
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
16
+ 7y
15
+ ··· 11y + 1
c
2
, c
4
, c
8
c
10
y
16
+ 7y
15
+ ··· + 9y + 1
c
3
, c
9
(y
8
8y
7
+ 28y
6
52y
5
+ 50y
4
25y
3
+ 16y
2
12y + 1)
2
c
5
, c
6
, c
11
c
12
(y
8
+ 11y
7
+ 51y
6
+ 134y
5
+ 226y
4
+ 256y
3
+ 191y
2
+ 88y + 19)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.450136 + 0.896465I
a = 0.94613 + 1.22806I
b = 0.67503 + 1.40096I
2.63935 5.65917I 1.08017 + 3.20273I
u = 0.450136 0.896465I
a = 0.94613 1.22806I
b = 0.67503 1.40096I
2.63935 + 5.65917I 1.08017 3.20273I
u = 0.450136 + 0.896465I
a = 0.841491 0.713776I
b = 1.018660 0.433071I
2.63935 + 5.65917I 1.08017 3.20273I
u = 0.450136 0.896465I
a = 0.841491 + 0.713776I
b = 1.018660 + 0.433071I
2.63935 5.65917I 1.08017 + 3.20273I
u = 0.539427 + 0.986711I
a = 0.988608 + 0.489509I
b = 0.050278 + 1.239530I
2.28512 + 1.91134I 2.25611 2.12602I
u = 0.539427 0.986711I
a = 0.988608 0.489509I
b = 0.050278 1.239530I
2.28512 1.91134I 2.25611 + 2.12602I
u = 0.539427 + 0.986711I
a = 0.628905 + 0.629308I
b = 0.960194 + 0.281082I
2.28512 1.91134I 2.25611 + 2.12602I
u = 0.539427 0.986711I
a = 0.628905 0.629308I
b = 0.960194 0.281082I
2.28512 + 1.91134I 2.25611 2.12602I
u = 0.846388I
a = 1.181140 + 0.332598I
b = 0.281507 + 0.999702I
1.93059 6.07620
u = 0.846388I
a = 1.181140 0.332598I
b = 0.281507 0.999702I
1.93059 6.07620
24
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.04760 + 1.50314I
a = 0.799076 0.569432I
b = 0.81790 1.22823I
5.58575 4.39316I 7.09441 + 10.90971I
u = 0.04760 1.50314I
a = 0.799076 + 0.569432I
b = 0.81790 + 1.22823I
5.58575 + 4.39316I 7.09441 10.90971I
u = 0.04760 + 1.50314I
a = 0.247325 0.146593I
b = 0.208575 + 0.378743I
5.58575 + 4.39316I 7.09441 10.90971I
u = 0.04760 1.50314I
a = 0.247325 + 0.146593I
b = 0.208575 0.378743I
5.58575 4.39316I 7.09441 + 10.90971I
u = 1.78942I
a = 0.351537 0.179565I
b = 0.321316 0.629047I
8.83269 4.06250
u = 1.78942I
a = 0.351537 + 0.179565I
b = 0.321316 + 0.629047I
8.83269 4.06250
25
VI. I
u
6
= ha
3
u + a
2
u + · · · + 3a + 3, a
3
u 2a
2
u + · · · + 2a 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
a
1
3
a
3
u
1
3
a
2
u + ··· a 1
a
4
=
2
3
a
3
u +
4
3
a
2
u + ··· a + 1
a
3
u + a
3
4a
2
3au + 3a + 5u
a
2
=
1
3
a
3
u
1
3
a
2
u + ··· +
5
3
a
2
a
a
3
u + 2a
2
u + a
2
a u 1
a
10
=
a
2
u au a + 1
2
3
a
3
u +
7
3
a
2
u + ···
5
3
a
2
+ 2a
a
8
=
a
1
3
a
3
u
1
3
a
2
u + ··· 2a 1
a
3
=
4
3
a
3
u +
5
3
a
2
u + ··· 2a + 2
a
3
+ 2a
2
u 2a
2
2au + 2u 1
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 10
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
4
+ u
3
2u + 1)
2
c
2
, c
4
, c
8
c
10
u
8
4u
7
+ 9u
6
16u
5
+ 22u
4
18u
3
+ 18u
2
6u + 3
c
3
, c
9
(u
4
u
3
3u
2
+ 2u + 4)
2
c
5
, c
6
, c
11
c
12
(u
2
u + 1)
4
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
4
y
3
+ 6y
2
4y + 1)
2
c
2
, c
4
, c
8
c
10
y
8
+ 2y
7
3y
6
+ 32y
5
+ 190y
4
+ 330y
3
+ 240y
2
+ 72y + 9
c
3
, c
9
(y
4
7y
3
+ 21y
2
28y + 16)
2
c
5
, c
6
, c
11
c
12
(y
2
+ y + 1)
4
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.968092 0.487878I
b = 0.08797 1.50359I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.521310 + 0.118664I
b = 1.81567 0.80000I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.34613 + 0.67561I
b = 0.061531 + 1.082330I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.60065 1.17242I
b = 0.157889 0.510800I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 0.968092 + 0.487878I
b = 0.08797 + 1.50359I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.521310 0.118664I
b = 1.81567 + 0.80000I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.34613 0.67561I
b = 0.061531 1.082330I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.60065 + 1.17242I
b = 0.157889 + 0.510800I
3.28987 2.02988I 12.00000 + 3.46410I
29
VII. I
u
7
= h−au + b + u 1, a
2
au 2u + 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
a
au u + 1
a
4
=
u 1
a 2u 1
a
2
=
u 1
a u 1
a
10
=
a u
2au a 2u + 3
a
8
=
a
2au a u + 1
a
3
=
au a + u 1
au u 1
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 14
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u + 1)
4
c
2
, c
4
, c
8
c
10
u
4
+ u
3
+ 4u
2
+ 3
c
3
, c
9
(u
2
+ u + 1)
2
c
5
, c
6
, c
11
c
12
(u
2
u + 1)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y 1)
4
c
2
, c
4
, c
8
c
10
y
4
+ 7y
3
+ 22y
2
+ 24y + 9
c
3
, c
5
, c
6
c
9
, c
11
, c
12
(y
2
+ y + 1)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.705919 0.586193I
b = 0.65470 1.77047I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.20592 + 1.45222I
b = 0.154699 + 0.904441I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.705919 + 0.586193I
b = 0.65470 + 1.77047I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.500000 0.866025I
a = 1.20592 1.45222I
b = 0.154699 0.904441I
3.28987 + 2.02988I 12.00000 3.46410I
33
VIII. I
u
8
= hb u + 1, a 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
1
u 1
a
4
=
u
u
a
2
=
1
u 1
a
10
=
1
u 1
a
8
=
1
2u 2
a
3
=
2
3u 2
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
+ u + 1
c
2
, c
4
, c
5
c
6
, c
8
, c
10
c
11
, c
12
u
2
u + 1
c
3
u
2
3u + 3
c
9
u
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
+ y + 1
c
3
y
2
3y + 9
c
9
y
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
37
IX. I
u
9
= hb + u, a + u, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
u
u
a
4
=
u
u 1
a
2
=
1
2u
a
10
=
2u + 2
u + 2
a
8
=
u
u + 1
a
3
=
u
u 1
a
12
=
u
u 1
a
7
=
u
u 2
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
+ u + 1
c
2
, c
4
, c
5
c
6
, c
8
, c
10
c
11
, c
12
u
2
u + 1
c
3
u
2
c
9
u
2
3u + 3
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
+ y + 1
c
3
y
2
c
9
y
2
3y + 9
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
41
X. I
u
10
= hb + u + 1, a + u, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u 1
a
9
=
u
u 1
a
4
=
0
u
a
2
=
0
u
a
10
=
u
u 2
a
8
=
u
u 2
a
3
=
1
u 1
a
12
=
u
u + 1
a
7
=
u
u 2
a
11
=
2u + 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
42
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
c
2
, c
3
, c
4
c
8
, c
9
, c
10
u
2
u + 1
c
5
, c
6
, c
11
c
12
u
2
+ u + 1
43
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
, c
11
c
12
y
2
+ y + 1
44
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
45
XI. I
v
1
= ha, b
2
+ b + 1, v + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
1
0
a
6
=
1
0
a
9
=
0
b
a
4
=
1
b 1
a
2
=
b
b
a
10
=
1
b + 1
a
8
=
b
b
a
3
=
0
b
a
12
=
1
0
a
7
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8b + 4
46
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
2
u + 1
c
2
, c
4
, c
8
c
10
u
2
+ u + 1
c
5
, c
6
, c
11
c
12
u
2
47
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
9
, c
10
y
2
+ y + 1
c
5
, c
6
, c
11
c
12
y
2
48
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. + 6.92820I
v = 1.00000
a = 0
b = 0.500000 0.866025I
4.05977I 0. 6.92820I
49
XII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
(u + 1)
4
(u
2
u + 1)(u
2
+ u + 1)
4
(u
4
+ u
3
2u + 1)
4
· (u
11
5u
10
+ ··· + 5u + 7)(u
14
8u
13
+ ··· 21u + 3)
· (u
16
7u
15
+ ··· + u + 1)
c
2
, c
4
, c
8
c
10
((u
2
u + 1)
3
)(u
2
+ u + 1)(u
4
+ u
3
+ ··· + 4u + 4)(u
4
+ u
3
+ 4u
2
+ 3)
· (u
8
4u
7
+ 9u
6
16u
5
+ 22u
4
18u
3
+ 18u
2
6u + 3)
· (u
8
+ 5u
7
+ 12u
6
+ 20u
5
+ 28u
4
+ 33u
3
+ 36u
2
+ 6u + 3)
· (u
11
+ u
10
+ 6u
9
+ 4u
8
+ 14u
7
+ 4u
6
+ 8u
5
5u
3
3u
2
+ u + 1)
· (u
14
+ 8u
12
+ ··· 3u + 1)(u
16
u
15
+ ··· 3u + 1)
c
3
, c
9
u
2
(u
2
3u + 3)(u
2
u + 1)
2
(u
2
+ u + 1)
2
(u
4
+ 3u
2
6u + 3)
· (u
4
u
3
3u
2
+ 2u + 4)
2
(u
4
+ 2u
3
3u
2
4u + 7)
2
· (u
7
+ u
6
2u
5
2u
4
u
3
3u
2
1)
2
· ((u
8
4u
6
+ ··· 4u 1)
2
)(u
11
2u
10
+ ··· 9u + 24)
c
5
, c
6
, c
11
c
12
u
2
(u
2
u + 1)
14
(u
2
+ u + 1)
· (u
7
+ 4u
6
+ 11u
5
+ 20u
4
+ 26u
3
+ 25u
2
+ 14u + 4)
2
· (u
11
+ 6u
10
+ ··· + 44u + 8)
· (u
16
+ 11u
14
+ 51u
12
+ 134u
10
+ 226u
8
+ 256u
6
+ 191u
4
+ 88u
2
+ 19)
50
XIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
(y 1)
4
(y
2
+ y + 1)
5
(y
4
y
3
+ 6y
2
4y + 1)
4
· (y
11
+ 5y
10
+ ··· 31y 49)(y
14
+ 2y
13
+ ··· 33y + 9)
· (y
16
+ 7y
15
+ ··· 11y + 1)
c
2
, c
4
, c
8
c
10
((y
2
+ y + 1)
4
)(y
4
+ 5y
3
+ ··· + 8y + 16)(y
4
+ 7y
3
+ ··· + 24y + 9)
· (y
8
y
7
+ 14y
5
+ 274y
4
+ 759y
3
+ 1068y
2
+ 180y + 9)
· (y
8
+ 2y
7
3y
6
+ 32y
5
+ 190y
4
+ 330y
3
+ 240y
2
+ 72y + 9)
· (y
11
+ 11y
10
+ ··· + 7y 1)(y
14
+ 16y
13
+ ··· 3y + 1)
· (y
16
+ 7y
15
+ ··· + 9y + 1)
c
3
, c
9
y
2
(y
2
3y + 9)(y
2
+ y + 1)
4
(y
4
10y
3
+ 39y
2
58y + 49)
2
· (y
4
7y
3
+ 21y
2
28y + 16)
2
(y
4
+ 6y
3
+ 15y
2
18y + 9)
· (y
7
5y
6
+ 6y
5
+ 6y
4
9y
3
13y
2
6y 1)
2
· (y
8
8y
7
+ 28y
6
52y
5
+ 50y
4
25y
3
+ 16y
2
12y + 1)
2
· (y
11
22y
10
+ ··· + 4305y 576)
c
5
, c
6
, c
11
c
12
y
2
(y
2
+ y + 1)
15
(y
7
+ 6y
6
+ 13y
5
48y
3
57y
2
4y 16)
2
· (y
8
+ 11y
7
+ 51y
6
+ 134y
5
+ 226y
4
+ 256y
3
+ 191y
2
+ 88y + 19)
2
· (y
11
+ 10y
10
+ ··· + 208y 64)
51