12n
0848
(K12n
0848
)
A knot diagram
1
Linearized knot diagam
4 9 10 1 11 3 4 5 7 5 6 9
Solving Sequence
5,10
11
1,6
4 3 7 8 9 2 12
c
10
c
5
c
4
c
3
c
6
c
7
c
9
c
2
c
12
c
1
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1490992711u
33
+ 21038016102u
32
+ ··· + 104665856b + 191326556928,
746029u
33
897227141u
32
+ ··· + 313997568a 74904566272, u
34
+ 16u
33
+ ··· + 512u + 256i
I
u
2
= h9001u
25
3749u
24
+ ··· + 24457b + 25814, 17555u
25
14121u
24
+ ··· + 73371a + 84484,
u
26
14u
24
+ ··· + u + 3i
I
u
3
= h−6a
3
bu 4a
3
b + 4a
2
bu + 2a
2
b bau a
2
u + b
2
ba 2bu a
2
+ 2au + u 1,
a
4
a
3
u + a
3
a
2
u + 2a
2
+ 2au 3a 3u + 5, u
2
u 1i
I
u
4
= h−6a
3
bu 4a
3
b + 8a
2
bu + 4a
2
b 3bau a
2
u + b
2
3ba + 2bu a
2
+ 2au + u 1,
a
4
2a
3
u + 2a
3
2a
2
u + 4a
2
2au + 3a 3u + 5, u
2
u 1i
I
u
5
= hb u, a, u
2
+ u 1i
* 5 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.49×10
9
u
33
+2.10×10
10
u
32
+· · · +1.05×10
8
b+1.91×10
11
, 7.46×10
5
u
33
8.97 × 10
8
u
32
+ · · · + 3.14 × 10
8
a 7.49 × 10
10
, u
34
+ 16u
33
+ · · · + 512u + 256i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
1
=
0.00237591u
33
+ 2.85743u
32
+ ··· + 210.618u + 238.551
14.2453u
33
201.002u
32
+ ··· 2806.15u 1827.97
a
6
=
u
u
3
+ u
a
4
=
9.99391u
33
154.470u
32
+ ··· 2993.11u 2567.55
46.6896u
33
+ 675.692u
32
+ ··· + 10474.3u + 7478.64
a
3
=
36.6957u
33
+ 521.222u
32
+ ··· + 7481.16u + 4911.09
46.6896u
33
+ 675.692u
32
+ ··· + 10474.3u + 7478.64
a
7
=
30.0648u
33
+ 443.715u
32
+ ··· + 7461.44u + 6086.67
8.51516u
33
+ 125.472u
32
+ ··· + 2106.90u + 1857.91
a
8
=
13.1190u
33
+ 186.388u
32
+ ··· + 2673.13u + 1806.42
28.4932u
33
403.883u
32
+ ··· 5742.22u 3935.80
a
9
=
13.1190u
33
186.388u
32
+ ··· 2673.13u 1806.42
12.1032u
33
178.316u
32
+ ··· 2939.47u 2084.28
a
2
=
0.811803u
33
+ 19.0064u
32
+ ··· + 712.808u + 606.416
28.5552u
33
410.268u
32
+ ··· 6140.23u 4213.59
a
12
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
470816681
3270808
u
33
+
27543600709
13083232
u
32
+ ··· +
13947213170
408851
u +
10499734540
408851
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
9u
33
+ ··· 135u + 45
c
2
, c
7
u
34
+ 15u
32
+ ··· + 3u + 31
c
3
, c
6
u
34
+ u
33
+ ··· 2u + 1
c
5
, c
10
, c
11
u
34
16u
33
+ ··· 512u + 256
c
8
, c
12
u
34
+ 2u
33
+ ··· + 2u + 1
c
9
u
34
+ 14u
33
+ ··· + 540u + 45
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
+ 9y
33
+ ··· + 7425y + 2025
c
2
, c
7
y
34
+ 30y
33
+ ··· + 16297y + 961
c
3
, c
6
y
34
25y
33
+ ··· 22y + 1
c
5
, c
10
, c
11
y
34
28y
33
+ ··· 65536y + 65536
c
8
, c
12
y
34
48y
33
+ ··· 10y + 1
c
9
y
34
6y
33
+ ··· + 31050y + 2025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.795593 + 0.740595I
a = 0.290888 + 0.609919I
b = 0.853986 + 1.101180I
3.51064 + 1.64445I 7.07709 8.00929I
u = 0.795593 0.740595I
a = 0.290888 0.609919I
b = 0.853986 1.101180I
3.51064 1.64445I 7.07709 + 8.00929I
u = 1.092680 + 0.387055I
a = 0.383036 0.709367I
b = 1.43819 0.26328I
0.064466 0.761171I 0
u = 1.092680 0.387055I
a = 0.383036 + 0.709367I
b = 1.43819 + 0.26328I
0.064466 + 0.761171I 0
u = 0.697499 + 0.930339I
a = 0.027330 + 1.123010I
b = 0.506447 0.080887I
6.81076 4.03336I 0
u = 0.697499 0.930339I
a = 0.027330 1.123010I
b = 0.506447 + 0.080887I
6.81076 + 4.03336I 0
u = 0.939424 + 0.738369I
a = 0.552486 0.224603I
b = 1.85831 0.64729I
3.08759 + 3.98437I 0
u = 0.939424 0.738369I
a = 0.552486 + 0.224603I
b = 1.85831 + 0.64729I
3.08759 3.98437I 0
u = 0.144340 + 0.791374I
a = 1.60313 0.01473I
b = 1.48435 + 0.51718I
2.79908 3.47479I 8.15502 + 3.50613I
u = 0.144340 0.791374I
a = 1.60313 + 0.01473I
b = 1.48435 0.51718I
2.79908 + 3.47479I 8.15502 3.50613I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.560287 + 1.062520I
a = 0.967599 + 0.348568I
b = 1.58175 0.28106I
6.28578 2.44883I 0
u = 0.560287 1.062520I
a = 0.967599 0.348568I
b = 1.58175 + 0.28106I
6.28578 + 2.44883I 0
u = 0.715757 + 1.021220I
a = 1.114730 + 0.080818I
b = 1.84474 0.41176I
5.93132 10.98960I 0
u = 0.715757 1.021220I
a = 1.114730 0.080818I
b = 1.84474 + 0.41176I
5.93132 + 10.98960I 0
u = 0.664796 + 1.099000I
a = 0.343002 + 0.963985I
b = 0.939763 + 0.206515I
5.69125 + 4.02411I 0
u = 0.664796 1.099000I
a = 0.343002 0.963985I
b = 0.939763 0.206515I
5.69125 4.02411I 0
u = 1.291770 + 0.282900I
a = 0.690521 + 0.673761I
b = 1.16812 + 1.17671I
3.78332 + 5.21759I 0
u = 1.291770 0.282900I
a = 0.690521 0.673761I
b = 1.16812 1.17671I
3.78332 5.21759I 0
u = 1.370090 + 0.033595I
a = 0.889375 + 0.029970I
b = 0.244301 + 0.277763I
6.81111 + 0.91596I 0
u = 1.370090 0.033595I
a = 0.889375 0.029970I
b = 0.244301 0.277763I
6.81111 0.91596I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.351170 + 0.333518I
a = 0.648443 + 0.927412I
b = 1.31097 + 1.11405I
1.91040 + 7.52741I 0
u = 1.351170 0.333518I
a = 0.648443 0.927412I
b = 1.31097 1.11405I
1.91040 7.52741I 0
u = 0.057196 + 0.549178I
a = 1.41929 0.58161I
b = 0.916802 + 0.411033I
0.35102 2.00388I 3.74140 + 5.07186I
u = 0.057196 0.549178I
a = 1.41929 + 0.58161I
b = 0.916802 0.411033I
0.35102 + 2.00388I 3.74140 5.07186I
u = 0.467415 + 0.199735I
a = 0.822304 0.650309I
b = 0.404343 + 0.377457I
1.146940 0.238863I 10.78369 + 2.61801I
u = 0.467415 0.199735I
a = 0.822304 + 0.650309I
b = 0.404343 0.377457I
1.146940 + 0.238863I 10.78369 2.61801I
u = 1.63628 + 0.32409I
a = 0.537236 + 0.644759I
b = 0.368302 0.377949I
14.4434 + 8.7543I 0
u = 1.63628 0.32409I
a = 0.537236 0.644759I
b = 0.368302 + 0.377949I
14.4434 8.7543I 0
u = 1.66486 + 0.33880I
a = 0.668565 0.515867I
b = 2.25117 1.06102I
13.7374 + 16.0989I 0
u = 1.66486 0.33880I
a = 0.668565 + 0.515867I
b = 2.25117 + 1.06102I
13.7374 16.0989I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.66017 + 0.38893I
a = 0.630339 0.408666I
b = 2.15582 1.03899I
13.5280 + 7.9597I 0
u = 1.66017 0.38893I
a = 0.630339 + 0.408666I
b = 2.15582 + 1.03899I
13.5280 7.9597I 0
u = 1.69061 + 0.34903I
a = 0.380909 + 0.625669I
b = 0.365451 + 0.042202I
13.49590 + 1.47115I 0
u = 1.69061 0.34903I
a = 0.380909 0.625669I
b = 0.365451 0.042202I
13.49590 1.47115I 0
8
II. I
u
2
= h9001u
25
3749u
24
+ · · · + 24457b + 25814, 17555u
25
14121u
24
+ · · · + 73371a + 84484, u
26
14u
24
+ · · · + u + 3i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
1
=
0.239263u
25
+ 0.192460u
24
+ ··· + 0.129438u 1.15146
0.368034u
25
+ 0.153289u
24
+ ··· 3.69919u 1.05549
a
6
=
u
u
3
+ u
a
4
=
0.133486u
25
+ 0.561148u
24
+ ··· 2.94220u + 2.26110
0.941285u
25
+ 0.413051u
24
+ ··· + 4.01889u 0.499203
a
3
=
0.807799u
25
+ 0.974200u
24
+ ··· + 1.07669u + 1.76190
0.941285u
25
+ 0.413051u
24
+ ··· + 4.01889u 0.499203
a
7
=
1.37857u
25
+ 1.35262u
24
+ ··· + 4.31739u 4.85565
0.395183u
25
0.0794864u
24
+ ··· + 0.306006u + 0.0778509
a
8
=
0.386869u
25
+ 0.659811u
24
+ ··· 5.29940u 0.572161
0.474670u
25
1.13448u
24
+ ··· 0.220959u + 0.263401
a
9
=
0.386869u
25
+ 0.659811u
24
+ ··· 5.29940u 0.572161
0.319091u
25
0.428589u
24
+ ··· 2.04138u 1.71603
a
2
=
0.217225u
25
+ 1.32330u
24
+ ··· 5.90926u + 3.22244
1.02441u
25
+ 1.62354u
24
+ ··· 1.93961u 5.52018
a
12
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49040
24457
u
25
+
47416
24457
u
24
+ ··· +
432909
24457
u
279738
24457
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
10u
25
+ ··· 7u + 1
c
2
, c
7
u
26
+ u
25
+ ··· + u + 1
c
3
, c
6
u
26
+ 3u
24
+ ··· + 2u + 1
c
4
u
26
+ 10u
25
+ ··· + 7u + 1
c
5
u
26
14u
24
+ ··· u + 3
c
8
, c
12
u
26
u
25
+ ··· 2u + 1
c
9
u
26
15u
25
+ ··· 3u
2
+ 1
c
10
, c
11
u
26
14u
24
+ ··· + u + 3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
26
+ 8y
25
+ ··· + 25y + 1
c
2
, c
7
y
26
+ 9y
25
+ ··· + y + 1
c
3
, c
6
y
26
+ 6y
25
+ ··· 2y + 1
c
5
, c
10
, c
11
y
26
28y
25
+ ··· 139y + 9
c
8
, c
12
y
26
y
25
+ ··· + 10y + 1
c
9
y
26
7y
25
+ ··· 6y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.893260 + 0.637608I
a = 0.560326 + 0.364777I
b = 2.06321 + 0.72664I
3.35683 4.09621I 9.04442 + 9.36453I
u = 0.893260 0.637608I
a = 0.560326 0.364777I
b = 2.06321 0.72664I
3.35683 + 4.09621I 9.04442 9.36453I
u = 0.880673 + 0.813599I
a = 0.199661 0.634313I
b = 0.933273 0.889664I
3.23266 1.47692I 14.8020 4.6669I
u = 0.880673 0.813599I
a = 0.199661 + 0.634313I
b = 0.933273 + 0.889664I
3.23266 + 1.47692I 14.8020 + 4.6669I
u = 1.185480 + 0.207955I
a = 0.955887 + 0.901453I
b = 0.811448 + 0.957313I
4.63801 + 5.99993I 14.9211 9.9188I
u = 1.185480 0.207955I
a = 0.955887 0.901453I
b = 0.811448 0.957313I
4.63801 5.99993I 14.9211 + 9.9188I
u = 1.202230 + 0.117764I
a = 0.637447 0.487886I
b = 2.06384 0.07791I
0.49786 5.55128I 9.12515 + 7.27164I
u = 1.202230 0.117764I
a = 0.637447 + 0.487886I
b = 2.06384 + 0.07791I
0.49786 + 5.55128I 9.12515 7.27164I
u = 1.243290 + 0.193806I
a = 0.489545 0.716730I
b = 1.52007 + 0.02768I
0.692396 + 0.908891I 7.23329 0.60855I
u = 1.243290 0.193806I
a = 0.489545 + 0.716730I
b = 1.52007 0.02768I
0.692396 0.908891I 7.23329 + 0.60855I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.658052 + 0.322237I
a = 0.42930 1.84882I
b = 0.1212750 0.0229366I
2.72945 3.92062I 4.89712 + 0.84761I
u = 0.658052 0.322237I
a = 0.42930 + 1.84882I
b = 0.1212750 + 0.0229366I
2.72945 + 3.92062I 4.89712 0.84761I
u = 0.253711 + 0.648614I
a = 1.54093 + 0.37558I
b = 1.54024 + 0.65815I
3.74733 3.59988I 2.14910 + 5.61503I
u = 0.253711 0.648614I
a = 1.54093 0.37558I
b = 1.54024 0.65815I
3.74733 + 3.59988I 2.14910 5.61503I
u = 1.323060 + 0.064355I
a = 0.913064 0.390548I
b = 0.186999 0.379225I
6.94880 1.74984I 16.2080 + 5.2909I
u = 1.323060 0.064355I
a = 0.913064 + 0.390548I
b = 0.186999 + 0.379225I
6.94880 + 1.74984I 16.2080 5.2909I
u = 0.523416 + 0.235808I
a = 0.028987 + 1.090670I
b = 1.72849 + 0.71878I
1.85328 + 4.23193I 1.90603 3.22437I
u = 0.523416 0.235808I
a = 0.028987 1.090670I
b = 1.72849 0.71878I
1.85328 4.23193I 1.90603 + 3.22437I
u = 1.39226 + 0.31614I
a = 0.575637 + 0.854749I
b = 1.37916 + 1.22716I
1.47076 + 7.28765I 1.27616 2.61256I
u = 1.39226 0.31614I
a = 0.575637 0.854749I
b = 1.37916 1.22716I
1.47076 7.28765I 1.27616 + 2.61256I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.424309 + 0.245639I
a = 2.57995 + 0.40653I
b = 0.973329 0.091897I
3.57929 + 2.94101I 6.02456 4.67234I
u = 0.424309 0.245639I
a = 2.57995 0.40653I
b = 0.973329 + 0.091897I
3.57929 2.94101I 6.02456 + 4.67234I
u = 1.62079 + 0.00745I
a = 0.614461 + 0.601198I
b = 1.63692 + 0.02907I
11.33640 3.61266I 11.52145 + 2.34970I
u = 1.62079 0.00745I
a = 0.614461 0.601198I
b = 1.63692 0.02907I
11.33640 + 3.61266I 11.52145 2.34970I
u = 1.63421 + 0.00977I
a = 0.072905 0.173246I
b = 1.47945 0.36272I
6.35593 + 3.58442I 8.09065 3.04488I
u = 1.63421 0.00977I
a = 0.072905 + 0.173246I
b = 1.47945 + 0.36272I
6.35593 3.58442I 8.09065 + 3.04488I
14
III.
I
u
3
= h−6a
3
bu + 4a
2
bu + · · · a
2
1, a
3
u a
2
u + · · · 3a + 5, u
2
u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
1
=
a
b
a
6
=
u
u 1
a
4
=
a
2
u
bau + u
a
3
=
bau + a
2
u + u
bau + u
a
7
=
a
3
bu + a
3
b + a
2
u + a
2
2au 1
2a
3
u a
3
+ a
2
u + a
2
au 1
a
8
=
a
2
bu 2a
3
u a
3
+ a
2
u + a
2
2au
2a
2
bu + 3a
3
u + a
2
b + 2a
3
a
2
u + 2au + 2a
a
9
=
a
2
bu + 2a
3
u + a
3
a
2
u a
2
+ 2au
2a
3
u + a
3
2a
2
u 2a
2
+ 2au
a
2
=
a
3
u + a
3
+ a
a
2
bu + a
2
b + au + b + a
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a
3
u 4a
3
+ 12a
2
u + 12a
2
8au 10
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
+ u
3
+ u
2
u + 1)
4
c
2
, c
7
u
16
+ 2u
15
+ ··· + 138u + 379
c
3
, c
6
u
16
+ u
15
+ ··· + 56u + 59
c
5
, c
10
, c
11
(u
2
+ u 1)
8
c
8
, c
12
u
16
u
15
+ ··· + 284u + 59
c
9
(u
4
u
3
+ u
2
+ u + 1)
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
(y
4
+ y
3
+ 5y
2
+ y + 1)
4
c
2
, c
7
y
16
+ 16y
15
+ ··· + 431966y + 143641
c
3
, c
6
y
16
+ 7y
15
+ ··· 9862y + 3481
c
5
, c
10
, c
11
(y
2
3y + 1)
8
c
8
, c
12
y
16
y
15
+ ··· 39710y + 3481
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.701224 + 0.850806I
b = 0.921506 + 0.765153I
1.25412 4.68603I 8.70941 + 10.27938I
u = 0.618034
a = 0.701224 + 0.850806I
b = 2.34307 + 0.30970I
1.25412 4.68603I 8.70941 + 10.27938I
u = 0.618034
a = 0.701224 0.850806I
b = 0.921506 0.765153I
1.25412 + 4.68603I 8.70941 10.27938I
u = 0.618034
a = 0.701224 0.850806I
b = 2.34307 0.30970I
1.25412 + 4.68603I 8.70941 10.27938I
u = 0.618034
a = 1.51024 + 1.83240I
b = 0.658617 + 0.576443I
3.22804 + 4.68603I 11.2906 10.2794I
u = 0.618034
a = 1.51024 + 1.83240I
b = 0.453931 0.626400I
3.22804 + 4.68603I 11.2906 10.2794I
u = 0.618034
a = 1.51024 1.83240I
b = 0.658617 0.576443I
3.22804 4.68603I 11.2906 + 10.2794I
u = 0.618034
a = 1.51024 1.83240I
b = 0.453931 + 0.626400I
3.22804 4.68603I 11.2906 + 10.2794I
u = 1.61803
a = 0.576861 + 0.699914I
b = 1.43394 + 0.81776I
11.12370 4.68603I 11.2906 + 10.2794I
u = 1.61803
a = 0.576861 + 0.699914I
b = 1.47875 0.94855I
11.12370 4.68603I 11.2906 + 10.2794I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.61803
a = 0.576861 0.699914I
b = 1.43394 0.81776I
11.12370 + 4.68603I 11.2906 10.2794I
u = 1.61803
a = 0.576861 0.699914I
b = 1.47875 + 0.94855I
11.12370 + 4.68603I 11.2906 10.2794I
u = 1.61803
a = 0.267844 + 0.324979I
b = 0.169969 + 0.304317I
6.64156 + 4.68603I 8.70941 10.27938I
u = 1.61803
a = 0.267844 + 0.324979I
b = 3.55174 + 2.50968I
6.64156 + 4.68603I 8.70941 10.27938I
u = 1.61803
a = 0.267844 0.324979I
b = 0.169969 0.304317I
6.64156 4.68603I 8.70941 + 10.27938I
u = 1.61803
a = 0.267844 0.324979I
b = 3.55174 2.50968I
6.64156 4.68603I 8.70941 + 10.27938I
19
IV.
I
u
4
= h−6a
3
bu + 8a
2
bu + · · · a
2
1, 2a
3
u 2a
2
u + · · · + 3a + 5, u
2
u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
1
=
a
b
a
6
=
u
u 1
a
4
=
a
2
u
bau + u
a
3
=
bau + a
2
u + u
bau + u
a
7
=
a
3
bu + a
3
b + 4a
3
u + 2a
3
a
2
u a
2
+ 2au 1
au 1
a
8
=
a
3
bu a
3
b + 2a
2
bu 2a
3
u a
3
+ a
2
u ba + bu + a
2
+ au b
3a
3
bu 4a
2
bu + ··· a 1
a
9
=
a
3
bu + a
3
b 2a
2
bu + 2a
3
u + a
3
a
2
u + ba bu a
2
au + b
a
2
u + a
2
2au + 1
a
2
=
a
3
u + a
3
+ a
a
2
bu + a
2
b + au + b + a
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16a
3
u + 8a
3
12a
2
u 12a
2
+ 4au 10
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
4
c
2
, c
7
u
16
u
15
+ ··· + 140u + 31
c
3
, c
6
u
16
2u
14
+ ··· 50u + 19
c
5
, c
10
, c
11
(u
2
+ u 1)
8
c
8
, c
12
u
16
10u
14
+ ··· 348u + 181
c
9
(u
4
2u
3
+ 2u
2
u + 1)
4
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
(y
4
+ 2y
2
+ 3y + 1)
4
c
2
, c
7
y
16
+ 7y
15
+ ··· 4534y + 961
c
3
, c
6
y
16
4y
15
+ ··· 2006y + 361
c
5
, c
10
, c
11
(y
2
3y + 1)
8
c
8
, c
12
y
16
20y
15
+ ··· 157666y + 32761
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.114389 + 1.227680I
b = 1.240620 0.088689I
2.40496 + 2.59539I 2.46048 0.91892I
u = 0.618034
a = 0.114389 + 1.227680I
b = 1.04645 + 1.23483I
2.40496 + 2.59539I 2.46048 0.91892I
u = 0.618034
a = 0.114389 1.227680I
b = 1.240620 + 0.088689I
2.40496 2.59539I 2.46048 + 0.91892I
u = 0.618034
a = 0.114389 1.227680I
b = 1.04645 1.23483I
2.40496 2.59539I 2.46048 + 0.91892I
u = 0.618034
a = 1.73242 + 1.22768I
b = 1.46250 + 0.00227I
4.37888 + 2.59539I 17.5395 0.9189I
u = 0.618034
a = 1.73242 + 1.22768I
b = 0.0322538 + 0.0734044I
4.37888 + 2.59539I 17.5395 0.9189I
u = 0.618034
a = 1.73242 1.22768I
b = 1.46250 0.00227I
4.37888 2.59539I 17.5395 + 0.9189I
u = 0.618034
a = 1.73242 1.22768I
b = 0.0322538 0.0734044I
4.37888 2.59539I 17.5395 + 0.9189I
u = 1.61803
a = 0.661727 + 0.468930I
b = 0.723384 0.015686I
12.27460 2.59539I 17.5395 + 0.9189I
u = 1.61803
a = 0.661727 + 0.468930I
b = 3.02105 + 0.21381I
12.27460 2.59539I 17.5395 + 0.9189I
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.61803
a = 0.661727 0.468930I
b = 0.723384 + 0.015686I
12.27460 + 2.59539I 17.5395 0.9189I
u = 1.61803
a = 0.661727 0.468930I
b = 3.02105 0.21381I
12.27460 + 2.59539I 17.5395 0.9189I
u = 1.61803
a = 0.043693 + 0.468930I
b = 0.491811 0.313559I
5.49072 2.59539I 2.46048 + 0.91892I
u = 1.61803
a = 0.043693 + 0.468930I
b = 0.01655 + 3.31420I
5.49072 2.59539I 2.46048 + 0.91892I
u = 1.61803
a = 0.043693 0.468930I
b = 0.491811 + 0.313559I
5.49072 + 2.59539I 2.46048 0.91892I
u = 1.61803
a = 0.043693 0.468930I
b = 0.01655 3.31420I
5.49072 + 2.59539I 2.46048 0.91892I
24
V. I
u
5
= hb u, a, u
2
+ u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
1
=
0
u
a
6
=
u
u + 1
a
4
=
0
u
a
3
=
u
u
a
7
=
1
0
a
8
=
1
u + 1
a
9
=
1
0
a
2
=
0
u
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
u
2
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
2
u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
9
y
2
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
2
3y + 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0
b = 0.618034
0.986960 10.0000
u = 1.61803
a = 0
b = 1.61803
8.88264 10.0000
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u
4
+ u
3
+ u
2
u + 1)
4
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
4
· (u
26
10u
25
+ ··· 7u + 1)(u
34
9u
33
+ ··· 135u + 45)
c
2
, c
7
(u
2
u 1)(u
16
u
15
+ ··· + 140u + 31)(u
16
+ 2u
15
+ ··· + 138u + 379)
· (u
26
+ u
25
+ ··· + u + 1)(u
34
+ 15u
32
+ ··· + 3u + 31)
c
3
, c
6
(u
2
u 1)(u
16
2u
14
+ ··· 50u + 19)(u
16
+ u
15
+ ··· + 56u + 59)
· (u
26
+ 3u
24
+ ··· + 2u + 1)(u
34
+ u
33
+ ··· 2u + 1)
c
4
u
2
(u
4
+ u
3
+ u
2
u + 1)
4
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
4
· (u
26
+ 10u
25
+ ··· + 7u + 1)(u
34
9u
33
+ ··· 135u + 45)
c
5
(u
2
u 1)(u
2
+ u 1)
16
(u
26
14u
24
+ ··· u + 3)
· (u
34
16u
33
+ ··· 512u + 256)
c
8
, c
12
(u
2
u 1)(u
16
10u
14
+ ··· 348u + 181)
· (u
16
u
15
+ ··· + 284u + 59)(u
26
u
25
+ ··· 2u + 1)
· (u
34
+ 2u
33
+ ··· + 2u + 1)
c
9
u
2
(u
4
2u
3
+ 2u
2
u + 1)
4
(u
4
u
3
+ u
2
+ u + 1)
4
· (u
26
15u
25
+ ··· 3u
2
+ 1)(u
34
+ 14u
33
+ ··· + 540u + 45)
c
10
, c
11
(u
2
u 1)(u
2
+ u 1)
16
(u
26
14u
24
+ ··· + u + 3)
· (u
34
16u
33
+ ··· 512u + 256)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
2
(y
4
+ 2y
2
+ 3y + 1)
4
(y
4
+ y
3
+ 5y
2
+ y + 1)
4
· (y
26
+ 8y
25
+ ··· + 25y + 1)(y
34
+ 9y
33
+ ··· + 7425y + 2025)
c
2
, c
7
(y
2
3y + 1)(y
16
+ 7y
15
+ ··· 4534y + 961)
· (y
16
+ 16y
15
+ ··· + 431966y + 143641)(y
26
+ 9y
25
+ ··· + y + 1)
· (y
34
+ 30y
33
+ ··· + 16297y + 961)
c
3
, c
6
(y
2
3y + 1)(y
16
4y
15
+ ··· 2006y + 361)
· (y
16
+ 7y
15
+ ··· 9862y + 3481)(y
26
+ 6y
25
+ ··· 2y + 1)
· (y
34
25y
33
+ ··· 22y + 1)
c
5
, c
10
, c
11
((y
2
3y + 1)
17
)(y
26
28y
25
+ ··· 139y + 9)
· (y
34
28y
33
+ ··· 65536y + 65536)
c
8
, c
12
(y
2
3y + 1)(y
16
20y
15
+ ··· 157666y + 32761)
· (y
16
y
15
+ ··· 39710y + 3481)(y
26
y
25
+ ··· + 10y + 1)
· (y
34
48y
33
+ ··· 10y + 1)
c
9
y
2
(y
4
+ 2y
2
+ 3y + 1)
4
(y
4
+ y
3
+ 5y
2
+ y + 1)
4
· (y
26
7y
25
+ ··· 6y + 1)(y
34
6y
33
+ ··· + 31050y + 2025)
30