12n
0850
(K12n
0850
)
A knot diagram
1
Linearized knot diagam
4 8 10 8 11 12 3 1 4 5 6 10
Solving Sequence
5,10
11 6 12
1,8
4 2 3 7 9
c
10
c
5
c
11
c
12
c
4
c
1
c
3
c
7
c
9
c
2
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
10
5u
9
4u
8
+ 8u
7
u
6
16u
5
+ 19u
4
+ 20u
3
15u
2
+ 2b + 5u + 4,
3u
10
10u
9
u
8
+ 14u
7
17u
6
17u
5
+ 47u
4
+ 13u
3
25u
2
+ 2a + 18u + 7,
u
11
+ 5u
10
+ 6u
9
4u
8
3u
7
+ 14u
6
5u
5
30u
4
u
3
+ 9u
2
10u 4i
I
u
2
= h−u
5
+ 4u
3
+ b 3u, u
5
5u
3
+ u
2
+ a + 6u 3, u
7
u
6
5u
5
+ 5u
4
+ 6u
3
7u
2
+ u + 1i
I
u
3
= hb, a + 1, u + 1i
I
u
4
= h−a
3
+ b + a + 1, a
4
+ a
3
2a 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
10
5u
9
+· · ·+2b+4, 3u
10
10u
9
+· · ·+2a+7, u
11
+5u
10
+· · ·10u4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
8
=
3
2
u
10
+ 5u
9
+ ··· 9u
7
2
1
2
u
10
+
5
2
u
9
+ ···
5
2
u 2
a
4
=
1
4
u
10
+
3
4
u
9
+ ···
5
4
u 1
1
2
u
10
3
2
u
9
+ ··· +
5
2
u + 1
a
2
=
1
2
u
9
1
2
u
8
+ ··· +
1
2
u +
3
2
5
2
u
10
+
17
2
u
9
+ ···
23
2
u 6
a
3
=
1
4
u
10
3
4
u
9
+ ···
3
4
u
2
+
5
4
u
1
2
u
10
3
2
u
9
+ ··· +
5
2
u + 1
a
7
=
u
3
2u
u
5
3u
3
+ u
a
9
=
u
10
5
2
u
9
+ ··· +
7
2
u +
5
2
1
2
u
10
5
2
u
9
+ ··· +
7
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
10
25u
9
6u
8
+ 36u
7
35u
6
50u
5
+ 113u
4
+ 43u
3
65u
2
+ 46u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
7u
10
+ ··· 2u + 2
c
2
, c
3
, c
7
c
9
u
11
+ 14u
9
+ 4u
8
+ 46u
7
+ 67u
6
66u
5
7u
4
30u
3
9u
2
3u 1
c
4
, c
8
u
11
+ u
10
+ ··· 4u 1
c
5
, c
6
, c
10
c
11
u
11
+ 5u
10
+ ··· 10u 4
c
12
u
11
3u
10
+ ··· 3192u 576
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
31y
10
+ ··· + 200y 4
c
2
, c
3
, c
7
c
9
y
11
+ 28y
10
+ ··· 9y 1
c
4
, c
8
y
11
+ 17y
10
+ ··· + 24y 1
c
5
, c
6
, c
10
c
11
y
11
13y
10
+ ··· + 172y 16
c
12
y
11
+ 67y
10
+ ··· + 7508160y 331776
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.18814
a = 0.348347
b = 0.566087
5.45154 15.3520
u = 0.651462 + 1.063750I
a = 1.81578 + 0.65642I
b = 1.77237 + 0.06609I
12.65630 3.45618I 10.65599 + 2.10885I
u = 0.651462 1.063750I
a = 1.81578 0.65642I
b = 1.77237 0.06609I
12.65630 + 3.45618I 10.65599 2.10885I
u = 0.496165 + 0.539201I
a = 1.042860 0.661841I
b = 1.138470 0.357731I
2.08534 1.86536I 10.69284 + 5.33447I
u = 0.496165 0.539201I
a = 1.042860 + 0.661841I
b = 1.138470 + 0.357731I
2.08534 + 1.86536I 10.69284 5.33447I
u = 1.53157 + 0.15203I
a = 0.354779 + 0.587363I
b = 1.12977 + 1.06011I
4.66784 + 4.30939I 14.0390 6.9085I
u = 1.53157 0.15203I
a = 0.354779 0.587363I
b = 1.12977 1.06011I
4.66784 4.30939I 14.0390 + 6.9085I
u = 0.330126
a = 0.768686
b = 0.139205
0.487897 20.3390
u = 1.64929 + 0.39522I
a = 0.914271 0.873133I
b = 1.77328 0.21395I
5.23140 + 8.93346I 13.21655 3.59394I
u = 1.64929 0.39522I
a = 0.914271 + 0.873133I
b = 1.77328 + 0.21395I
5.23140 8.93346I 13.21655 + 3.59394I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.79155
a = 0.218139
b = 0.739878
16.4464 7.09980
6
II. I
u
2
= h−u
5
+ 4u
3
+ b 3u, u
5
5u
3
+ u
2
+ a + 6u 3, u
7
u
6
5u
5
+
5u
4
+ 6u
3
7u
2
+ u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
8
=
u
5
+ 5u
3
u
2
6u + 3
u
5
4u
3
+ 3u
a
4
=
u
6
+ u
5
+ 4u
4
5u
3
2u
2
+ 7u 4
u
4
3u
2
+ 1
a
2
=
2u
6
+ 2u
5
+ 10u
4
10u
3
11u
2
+ 14u 4
u
6
5u
4
+ u
3
+ 6u
2
3u
a
3
=
u
6
+ u
5
+ 5u
4
5u
3
5u
2
+ 7u 3
u
4
3u
2
+ 1
a
7
=
u
3
2u
u
5
3u
3
+ u
a
9
=
u
5
+ 5u
3
u
2
6u + 4
u
3
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
2u
5
12u
4
+ 5u
3
+ 16u
2
3u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
6u
6
+ 12u
5
11u
4
+ 7u
3
3u
2
1
c
2
, c
9
u
7
u
6
+ u
5
2u
4
u
2
+ 1
c
3
, c
7
u
7
+ u
6
+ u
5
+ 2u
4
+ u
2
1
c
4
, c
8
u
7
u
5
2u
3
+ u
2
u + 1
c
5
, c
6
u
7
+ u
6
5u
5
5u
4
+ 6u
3
+ 7u
2
+ u 1
c
10
, c
11
u
7
u
6
5u
5
+ 5u
4
+ 6u
3
7u
2
+ u + 1
c
12
u
7
5u
6
+ 7u
5
5u
4
4u
3
7u
2
+ 5u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
7
12y
6
+ 26y
5
+ 11y
4
29y
3
31y
2
6y 1
c
2
, c
3
, c
7
c
9
y
7
+ y
6
3y
5
6y
4
2y
3
+ 3y
2
+ 2y 1
c
4
, c
8
y
7
2y
6
3y
5
+ 2y
4
+ 6y
3
+ 3y
2
y 1
c
5
, c
6
, c
10
c
11
y
7
11y
6
+ 47y
5
97y
4
+ 98y
3
47y
2
+ 15y 1
c
12
y
7
11y
6
9y
5
141y
4
+ 26y
3
79y
2
+ 39y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.602602 + 0.366097I
a = 0.802378 0.958802I
b = 1.74200 0.23095I
3.42389 1.23175I 6.47743 + 5.11160I
u = 0.602602 0.366097I
a = 0.802378 + 0.958802I
b = 1.74200 + 0.23095I
3.42389 + 1.23175I 6.47743 5.11160I
u = 1.50894
a = 1.02523
b = 1.39324
10.4234 15.1670
u = 1.59539 + 0.14916I
a = 0.285687 + 0.511963I
b = 1.59460 + 0.65214I
4.17528 + 3.26775I 10.72162 1.02180I
u = 1.59539 0.14916I
a = 0.285687 0.511963I
b = 1.59460 0.65214I
4.17528 3.26775I 10.72162 + 1.02180I
u = 0.293328
a = 4.54991
b = 0.781203
4.14361 7.95280
u = 1.76997
a = 0.399006
b = 0.501243
16.8289 28.4820
10
III. I
u
3
= hb, a + 1, u + 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
12
=
0
1
a
1
=
1
1
a
8
=
1
0
a
4
=
1
1
a
2
=
3
1
a
3
=
2
1
a
7
=
1
1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u 2
c
2
, c
4
, c
8
c
9
, c
10
, c
11
c
12
u + 1
c
3
, c
5
, c
6
c
7
u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
6.57974 24.0000
14
IV. I
u
4
= h−a
3
+ b + a + 1, a
4
+ a
3
2a 1, u 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
12
=
0
1
a
1
=
1
1
a
8
=
a
a
3
a 1
a
4
=
a
2
a
3
a
2
+ a + 2
a
2
=
a 2
a
3
1
a
3
=
a
3
+ a + 2
a
3
a
2
+ a + 2
a
7
=
1
1
a
9
=
a
3
+ a + 1
2a
3
a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u 1)
2
c
2
, c
3
, c
7
c
9
u
4
u
3
+ 2u
2
4u + 1
c
4
, c
8
u
4
+ u
3
2u 1
c
5
, c
6
, c
10
c
11
(u 1)
4
c
12
(u + 1)
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
3y + 1)
2
c
2
, c
3
, c
7
c
9
y
4
+ 3y
3
2y
2
12y + 1
c
4
, c
8
y
4
y
3
+ 2y
2
4y + 1
c
5
, c
6
, c
10
c
11
, c
12
(y 1)
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.15372
b = 0.618034
5.59278 14.0000
u = 1.00000
a = 0.809017 + 0.981593I
b = 1.61803
2.30291 14.0000
u = 1.00000
a = 0.809017 0.981593I
b = 1.61803
2.30291 14.0000
u = 1.00000
a = 0.535687
b = 0.618034
5.59278 14.0000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 2)(u
2
+ u 1)
2
(u
7
6u
6
+ 12u
5
11u
4
+ 7u
3
3u
2
1)
· (u
11
7u
10
+ ··· 2u + 2)
c
2
, c
9
(u + 1)(u
4
u
3
+ 2u
2
4u + 1)(u
7
u
6
+ u
5
2u
4
u
2
+ 1)
· (u
11
+ 14u
9
+ 4u
8
+ 46u
7
+ 67u
6
66u
5
7u
4
30u
3
9u
2
3u 1)
c
3
, c
7
(u 1)(u
4
u
3
+ 2u
2
4u + 1)(u
7
+ u
6
+ u
5
+ 2u
4
+ u
2
1)
· (u
11
+ 14u
9
+ 4u
8
+ 46u
7
+ 67u
6
66u
5
7u
4
30u
3
9u
2
3u 1)
c
4
, c
8
(u + 1)(u
4
+ u
3
2u 1)(u
7
u
5
2u
3
+ u
2
u + 1)
· (u
11
+ u
10
+ ··· 4u 1)
c
5
, c
6
(u 1)
5
(u
7
+ u
6
5u
5
5u
4
+ 6u
3
+ 7u
2
+ u 1)
· (u
11
+ 5u
10
+ ··· 10u 4)
c
10
, c
11
(u 1)
4
(u + 1)(u
7
u
6
5u
5
+ 5u
4
+ 6u
3
7u
2
+ u + 1)
· (u
11
+ 5u
10
+ ··· 10u 4)
c
12
(u + 1)
5
(u
7
5u
6
+ 7u
5
5u
4
4u
3
7u
2
+ 5u + 1)
· (u
11
3u
10
+ ··· 3192u 576)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 4)(y
2
3y + 1)
2
(y
7
12y
6
+ ··· 6y 1)
· (y
11
31y
10
+ ··· + 200y 4)
c
2
, c
3
, c
7
c
9
(y 1)(y
4
+ 3y
3
2y
2
12y + 1)
· (y
7
+ y
6
+ ··· + 2y 1)(y
11
+ 28y
10
+ ··· 9y 1)
c
4
, c
8
(y 1)(y
4
y
3
+ 2y
2
4y + 1)(y
7
2y
6
+ ··· y 1)
· (y
11
+ 17y
10
+ ··· + 24y 1)
c
5
, c
6
, c
10
c
11
(y 1)
5
(y
7
11y
6
+ 47y
5
97y
4
+ 98y
3
47y
2
+ 15y 1)
· (y
11
13y
10
+ ··· + 172y 16)
c
12
(y 1)
5
(y
7
11y
6
9y
5
141y
4
+ 26y
3
79y
2
+ 39y 1)
· (y
11
+ 67y
10
+ ··· + 7508160y 331776)
20