11a
44
(K11a
44
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 3 6 7 5 10
Solving Sequence
3,7
8
4,9 1,10
2 6 11 5
c
7
c
3
c
9
c
2
c
6
c
11
c
5
c
1
, c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h295797384u
18
+ 418536515u
17
+ ··· + 3702415268d 1995040792,
186291706u
18
+ 295294768u
17
+ ··· + 3702415268c 4955557140,
340509075u
18
461083130u
17
+ ··· + 3702415268b + 2243928812,
1103288949u
18
1383517078u
17
+ ··· + 7404830536a + 9000488512,
u
19
+ 2u
18
+ ··· + 4u
2
8i
I
u
2
= hu
7
2u
6
+ u
5
+ 3u
4
5u
3
+ 3u
2
+ d + u 1, u
7
3u
6
+ u
5
+ 4u
4
8u
3
+ 5u
2
+ 2c + u 4,
u
7
a + 2u
6
a + 2u
7
4u
6
4u
4
a + 2u
5
+ 5u
3
a + 5u
4
u
2
a 9u
3
3au + 8u
2
+ b + 2a u,
3u
7
a 4u
7
+ ··· 6a + 8, u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2i
I
u
3
= hu
5
a + u
4
a u
5
u
3
a u
4
u
2
a + u
2
+ d, u
5
a u
4
a + u
2
a + u
3
+ au + u
2
+ c 1,
u
4
a u
3
a + u
4
+ 2u
2
a + u
3
+ au + b a u, 2u
5
a + 2u
4
a u
5
2u
3
a u
4
3u
2
a + a
2
+ u
2
+ a,
u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
4
= hu
5
c u
5
2u
3
c + u
3
+ 2cu + d u + 1, 2u
4
c u
3
c + u
4
+ 2u
2
c + c
2
+ 2cu u
2
u, u
2
+ b,
u
2
+ a + 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
5
= hu
5
u
3
+ d + u, 2u
5
+ 2u
4
3u
3
4u
2
+ c + 2u + 2, u
2
+ b, u
2
+ a + 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
v
1
= ha, d, c 1, b 1, v + 1i
I
v
2
= hc, d + 1, b, a 1, v 1i
I
v
3
= ha, d + 1, c a 1, b + 1, v 1i
I
v
4
= hc, d + 1, av + c v 1, bv + 1i
* 8 irreducible components of dim
C
= 0, with total 68 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h2.96 × 10
8
u
18
+ 4.19 × 10
8
u
17
+ · · · + 3.70 × 10
9
d 2.00 ×
10
9
, 1.86 × 10
8
u
18
+ 2.95 × 10
8
u
17
+ · · · + 3.70 × 10
9
c 4.96 × 10
9
, 3.41 ×
10
8
u
18
4.61 × 10
8
u
17
+ · · · + 3.70 × 10
9
b + 2.24 × 10
9
, 1.10 × 10
9
u
18
1.38 × 10
9
u
17
+ · · · + 7.40 × 10
9
a + 9.00 × 10
9
, u
19
+ 2u
18
+ · · · + 4u
2
8i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
0.0503163u
18
0.0797573u
17
+ ··· 0.0228247u + 1.33847
0.0798931u
18
0.113044u
17
+ ··· 0.992877u + 0.538848
a
1
=
0.148996u
18
+ 0.186840u
17
+ ··· + 0.656789u 1.21549
0.0919694u
18
+ 0.124536u
17
+ ··· + 1.08046u 0.606072
a
10
=
0.130209u
18
0.192802u
17
+ ··· 1.01570u + 1.87731
0.0798931u
18
0.113044u
17
+ ··· 0.992877u + 0.538848
a
2
=
0.0237009u
18
+ 0.0450696u
17
+ ··· + 0.0621551u 0.293810
0.0895560u
18
+ 0.0824521u
17
+ ··· + 1.48819u 0.554949
a
6
=
0.0503163u
18
0.0797573u
17
+ ··· 0.0228247u + 1.33847
0.133048u
18
+ 0.117935u
17
+ ··· + 1.39541u 0.705850
a
11
=
0.106508u
18
+ 0.147732u
17
+ ··· + 0.953547u 1.58350
0.00966290u
18
+ 0.0305921u
17
+ ··· + 0.504689u + 0.0161009
a
5
=
0.0570264u
18
0.0623040u
17
+ ··· + 0.423674u + 0.609417
0.143944u
18
+ 0.132344u
17
+ ··· + 1.53667u 1.02006
a
5
=
0.0570264u
18
0.0623040u
17
+ ··· + 0.423674u + 0.609417
0.143944u
18
+ 0.132344u
17
+ ··· + 1.53667u 1.02006
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1436975081
1851207634
u
18
348795105
1851207634
u
17
+ ···
4741127818
925603817
u +
7721567164
925603817
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
19
2u
18
+ ··· + 3u 1
c
2
, c
11
u
19
+ 8u
18
+ ··· + 19u + 1
c
3
, c
7
u
19
+ 2u
18
+ ··· + 4u
2
8
c
6
, c
8
, c
9
u
19
+ 2u
18
+ ··· 8u 4
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y
19
8y
18
+ ··· + 19y 1
c
2
, c
11
y
19
+ 12y
18
+ ··· + 195y 1
c
3
, c
7
y
19
6y
18
+ ··· + 64y 64
c
6
, c
8
, c
9
y
19
18y
18
+ ··· + 88y 16
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.085440 + 0.040618I
a = 0.082939 0.820035I
b = 0.548223 0.458686I
c = 0.526397 + 0.204170I
d = 0.651290 + 0.640476I
2.40223 3.63220I 3.52732 + 6.81616I
u = 1.085440 0.040618I
a = 0.082939 + 0.820035I
b = 0.548223 + 0.458686I
c = 0.526397 0.204170I
d = 0.651290 0.640476I
2.40223 + 3.63220I 3.52732 6.81616I
u = 0.122471 + 1.080680I
a = 0.718026 + 0.002764I
b = 1.002700 + 0.800999I
c = 0.423035 0.010382I
d = 1.362450 0.057980I
4.14406 1.22871I 4.10945 + 3.37998I
u = 0.122471 1.080680I
a = 0.718026 0.002764I
b = 1.002700 0.800999I
c = 0.423035 + 0.010382I
d = 1.362450 + 0.057980I
4.14406 + 1.22871I 4.10945 3.37998I
u = 0.583709 + 0.932517I
a = 1.248640 0.243760I
b = 0.757420 1.122890I
c = 0.663350 0.622962I
d = 0.198964 0.752266I
4.29720 4.85510I 5.63265 + 5.33490I
u = 0.583709 0.932517I
a = 1.248640 + 0.243760I
b = 0.757420 + 1.122890I
c = 0.663350 + 0.622962I
d = 0.198964 + 0.752266I
4.29720 + 4.85510I 5.63265 5.33490I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.628638 + 1.123100I
a = 1.232770 0.120292I
b = 1.30952 1.42851I
c = 0.413232 0.052969I
d = 1.380830 0.305181I
0.71510 + 8.68076I 0.47305 6.48182I
u = 0.628638 1.123100I
a = 1.232770 + 0.120292I
b = 1.30952 + 1.42851I
c = 0.413232 + 0.052969I
d = 1.380830 + 0.305181I
0.71510 8.68076I 0.47305 + 6.48182I
u = 1.114960 + 0.705316I
a = 0.111878 1.272940I
b = 1.46155 1.34018I
c = 0.523314 0.396742I
d = 0.213448 0.919956I
2.61225 + 10.89710I 3.23641 8.50579I
u = 1.114960 0.705316I
a = 0.111878 + 1.272940I
b = 1.46155 + 1.34018I
c = 0.523314 + 0.396742I
d = 0.213448 + 0.919956I
2.61225 10.89710I 3.23641 + 8.50579I
u = 0.072034 + 0.667244I
a = 0.502161 0.640166I
b = 0.246691 + 0.049771I
c = 1.56560 + 0.68284I
d = 0.463352 + 0.234060I
1.32552 + 1.22673I 3.58366 5.47914I
u = 0.072034 0.667244I
a = 0.502161 + 0.640166I
b = 0.246691 0.049771I
c = 1.56560 0.68284I
d = 0.463352 0.234060I
1.32552 1.22673I 3.58366 + 5.47914I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.241950 + 0.516338I
a = 0.276604 + 0.673540I
b = 1.46152 + 0.68811I
c = 1.72308 0.97561I
d = 1.43947 0.24883I
7.80660 4.21764I 6.24313 + 1.77538I
u = 1.241950 0.516338I
a = 0.276604 0.673540I
b = 1.46152 0.68811I
c = 1.72308 + 0.97561I
d = 1.43947 + 0.24883I
7.80660 + 4.21764I 6.24313 1.77538I
u = 1.391220 + 0.215371I
a = 0.043768 1.017560I
b = 0.031342 + 0.273386I
c = 1.88210 + 0.37845I
d = 1.51067 + 0.10269I
9.74824 + 5.99256I 5.35093 5.49640I
u = 1.391220 0.215371I
a = 0.043768 + 1.017560I
b = 0.031342 0.273386I
c = 1.88210 0.37845I
d = 1.51067 0.10269I
9.74824 5.99256I 5.35093 + 5.49640I
u = 1.18800 + 0.79635I
a = 0.064734 1.301180I
b = 1.97753 1.24306I
c = 1.28148 1.20067I
d = 1.41555 0.38935I
2.5538 15.5977I 0.09598 + 9.40344I
u = 1.18800 0.79635I
a = 0.064734 + 1.301180I
b = 1.97753 + 1.24306I
c = 1.28148 + 1.20067I
d = 1.41555 + 0.38935I
2.5538 + 15.5977I 0.09598 9.40344I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.497291
a = 0.142445
b = 0.642422
c = 0.543479
d = 0.839998
1.20822 9.19790
9
II. I
u
2
= hu
7
2u
6
+ · · · + d 1, u
7
3u
6
+ · · · + 2c 4, u
7
a + 2u
7
+ · · · +
b + 2a, 3u
7
a 4u
7
+ · · · 6a + 8, u
8
3u
7
+ · · · 2u + 2i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
1
2
u
7
+
3
2
u
6
+ ···
1
2
u + 2
u
7
+ 2u
6
u
5
3u
4
+ 5u
3
3u
2
u + 1
a
1
=
a
u
7
a 2u
7
+ ··· 2a + u
a
10
=
3
2
u
7
+
7
2
u
6
+ ···
3
2
u + 3
u
7
+ 2u
6
u
5
3u
4
+ 5u
3
3u
2
u + 1
a
2
=
u
6
a + 2u
7
+ ··· + 3a 4
u
7
a + 3u
6
a + ··· + 2a 2
a
6
=
1
2
u
7
+
3
2
u
6
+ ···
1
2
u + 2
u
6
+ u
5
+ u
4
3u
3
+ 2u
2
1
a
11
=
u
7
a +
5
2
u
7
+ ··· + 4a 5
u
7
+ 2u
6
+ ··· + 2u 1
a
5
=
u
7
a 2u
7
+ ··· 3a + u
u
7
a u
6
a + ··· + u 4
a
5
=
u
7
a 2u
7
+ ··· 3a + u
u
7
a u
6
a + ··· + u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
+ 4u
5
6u
4
4u
3
+ 6u
2
8u 4
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
16
u
15
+ ··· + 4u 4
c
2
, c
11
u
16
+ 7u
15
+ ··· + 40u + 16
c
3
, c
7
(u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2)
2
c
6
, c
8
, c
9
(u
8
+ u
7
4u
6
3u
5
+ 5u
4
+ u
3
u
2
+ 3u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y
16
7y
15
+ ··· 40y + 16
c
2
, c
11
y
16
+ y
15
+ ··· 544y + 256
c
3
, c
7
(y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4)
2
c
6
, c
8
, c
9
(y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.821613 + 0.567011I
a = 0.327841 1.281680I
b = 0.32411 2.07852I
c = 0.647330 0.378425I
d = 0.151337 0.673064I
4.77492 + 2.26376I 6.05872 4.53378I
u = 0.821613 + 0.567011I
a = 1.55977 0.26895I
b = 0.408126 1.151440I
c = 0.647330 0.378425I
d = 0.151337 0.673064I
4.77492 + 2.26376I 6.05872 4.53378I
u = 0.821613 0.567011I
a = 0.327841 + 1.281680I
b = 0.32411 + 2.07852I
c = 0.647330 + 0.378425I
d = 0.151337 + 0.673064I
4.77492 2.26376I 6.05872 + 4.53378I
u = 0.821613 0.567011I
a = 1.55977 + 0.26895I
b = 0.408126 + 1.151440I
c = 0.647330 + 0.378425I
d = 0.151337 + 0.673064I
4.77492 2.26376I 6.05872 + 4.53378I
u = 0.432344 + 1.079150I
a = 1.115680 0.168353I
b = 1.27697 0.76242I
c = 0.420583 + 0.036953I
d = 1.359440 + 0.207304I
2.93531 3.55755I 2.52739 + 2.62489I
u = 0.432344 + 1.079150I
a = 0.603271 + 0.193035I
b = 0.50994 + 1.48491I
c = 0.420583 + 0.036953I
d = 1.359440 + 0.207304I
2.93531 3.55755I 2.52739 + 2.62489I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.432344 1.079150I
a = 1.115680 + 0.168353I
b = 1.27697 + 0.76242I
c = 0.420583 0.036953I
d = 1.359440 0.207304I
2.93531 + 3.55755I 2.52739 2.62489I
u = 0.432344 1.079150I
a = 0.603271 0.193035I
b = 0.50994 1.48491I
c = 0.420583 0.036953I
d = 1.359440 0.207304I
2.93531 + 3.55755I 2.52739 2.62489I
u = 1.38845
a = 0.099908 + 0.914602I
b = 0.636148 0.242515I
c = 1.96418
d = 1.50912
10.1546 6.33750
u = 1.38845
a = 0.099908 0.914602I
b = 0.636148 + 0.242515I
c = 1.96418
d = 1.50912
10.1546 6.33750
u = 1.215250 + 0.684012I
a = 0.067480 1.248660I
b = 1.57665 0.90527I
c = 1.45820 + 1.13316I
d = 1.42757 + 0.33227I
5.44991 + 9.88301I 3.28252 6.06963I
u = 1.215250 + 0.684012I
a = 0.355893 + 0.630356I
b = 1.56027 + 1.09581I
c = 1.45820 + 1.13316I
d = 1.42757 + 0.33227I
5.44991 + 9.88301I 3.28252 6.06963I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.215250 0.684012I
a = 0.067480 + 1.248660I
b = 1.57665 + 0.90527I
c = 1.45820 1.13316I
d = 1.42757 0.33227I
5.44991 9.88301I 3.28252 + 6.06963I
u = 1.215250 0.684012I
a = 0.355893 0.630356I
b = 1.56027 1.09581I
c = 1.45820 1.13316I
d = 1.42757 0.33227I
5.44991 9.88301I 3.28252 + 6.06963I
u = 0.549965
a = 1.11644
b = 2.20354
c = 0.744760
d = 0.342714
2.57083 2.16010
u = 0.549965
a = 2.30659
b = 0.439006
c = 0.744760
d = 0.342714
2.57083 2.16010
15
III. I
u
3
= hu
5
a u
5
+ · · · + u
2
+ d, u
5
a u
4
a + · · · + c 1, u
4
a + u
4
+
· · · + b a, 2u
5
a u
5
+ · · · + a
2
+ a, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
5
a + u
4
a u
2
a u
3
au u
2
+ 1
u
5
a u
4
a + u
5
+ u
3
a + u
4
+ u
2
a u
2
a
1
=
a
u
4
a + u
3
a u
4
2u
2
a u
3
au + a + u
a
10
=
u
5
+ u
3
a + u
4
u
3
au 2u
2
+ 1
u
5
a u
4
a + u
5
+ u
3
a + u
4
+ u
2
a u
2
a
2
=
u
3
a + u
4
+ u
3
+ au + 2a u 1
u
5
a + u
4
a u
3
a u
4
3u
2
a u
3
+ u
2
+ 2a + u
a
6
=
u
5
a + u
4
a u
2
a u
3
au u
2
+ 1
au
a
11
=
u
5
a + u
4
a 2u
3
a u
2
a + au + u
2
+ 2a 1
u
5
a + u
4
a u
3
a u
4
3u
2
a u
3
+ u
2
+ 2a + u
a
5
=
u
4
a + u
3
a u
4
2u
2
a u
3
au + u
2u
4
a 2u
2
a + 2a 1
a
5
=
u
4
a + u
3
a u
4
2u
2
a u
3
au + u
2u
4
a 2u
2
a + 2a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
8
, c
9
u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1
c
2
u
12
+ 9u
11
+ ··· 4u + 1
c
3
, c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
5
, c
10
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
11
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
8
, c
9
y
12
9y
11
+ ··· + 4y + 1
c
2
y
12
13y
11
+ ··· 12y + 1
c
3
, c
5
, c
7
c
10
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.228720 1.004780I
b = 0.103539 0.942817I
c = 0.490081 + 0.135670I
d = 0.895235 + 0.524661I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 1.69020 0.12901I
b = 1.18901 0.78206I
c = 2.60446 + 1.12615I
d = 1.323480 + 0.139870I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 0.295542I
a = 0.228720 + 1.004780I
b = 0.103539 + 0.942817I
c = 0.490081 0.135670I
d = 0.895235 0.524661I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 1.69020 + 0.12901I
b = 1.18901 + 0.78206I
c = 2.60446 1.12615I
d = 1.323480 0.139870I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 + 0.664531I
a = 0.305248 + 0.125739I
b = 0.101098 + 0.828455I
c = 0.886780 + 0.510268I
d = 0.152828 + 0.487477I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.41743 1.68310I
b = 0.15460 3.71488I
c = 0.460381 0.041004I
d = 1.155020 0.191936I
1.89061 + 0.92430I 3.71672 0.79423I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 0.305248 0.125739I
b = 0.101098 0.828455I
c = 0.886780 0.510268I
d = 0.152828 0.487477I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 0.664531I
a = 0.41743 + 1.68310I
b = 0.15460 + 3.71488I
c = 0.460381 + 0.041004I
d = 1.155020 + 0.191936I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 0.266694 + 0.574266I
b = 1.16959 + 0.91104I
c = 0.550084 + 0.355577I
d = 0.282166 + 0.828798I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 1.57343 0.13663I
b = 1.01075 1.59090I
c = 1.78287 1.35197I
d = 1.356120 0.270046I
5.69302I 0. + 5.51057I
u = 1.073950 0.558752I
a = 0.266694 0.574266I
b = 1.16959 0.91104I
c = 0.550084 0.355577I
d = 0.282166 0.828798I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 1.57343 + 0.13663I
b = 1.01075 + 1.59090I
c = 1.78287 + 1.35197I
d = 1.356120 + 0.270046I
5.69302I 0. 5.51057I
20
IV. I
u
4
= hu
5
c u
5
+ · · · + d + 1, 2u
4
c + u
4
+ · · · + c
2
u, u
2
+ b, u
2
+
a + 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
c
u
5
c + u
5
+ 2u
3
c u
3
2cu + u 1
a
1
=
u
2
1
u
2
a
10
=
u
5
c + u
5
+ 2u
3
c u
3
2cu + c + u 1
u
5
c + u
5
+ 2u
3
c u
3
2cu + u 1
a
2
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
6
=
c
u
5
c u
5
2u
3
c u
2
c + u
3
+ 2cu u + 1
a
11
=
c
u
5
c u
5
2u
3
c + u
3
+ 2cu u + 1
a
5
=
1
0
a
5
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 2
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
c
3
, c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
5
, c
6
, c
8
c
9
, c
10
u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1
c
11
u
12
+ 9u
11
+ ··· 4u + 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
5
, c
6
, c
8
c
9
, c
10
y
12
9y
11
+ ··· + 4y + 1
c
11
y
12
13y
11
+ ··· 12y + 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.082955 + 0.592379I
b = 0.917045 + 0.592379I
c = 0.490081 + 0.135670I
d = 0.895235 + 0.524661I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 0.082955 + 0.592379I
b = 0.917045 + 0.592379I
c = 2.60446 + 1.12615I
d = 1.323480 + 0.139870I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 0.295542I
a = 0.082955 0.592379I
b = 0.917045 0.592379I
c = 0.490081 0.135670I
d = 0.895235 0.524661I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 0.082955 0.592379I
b = 0.917045 0.592379I
c = 2.60446 1.12615I
d = 1.323480 0.139870I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 + 0.664531I
a = 1.258210 0.569162I
b = 0.258209 0.569162I
c = 0.886780 + 0.510268I
d = 0.152828 + 0.487477I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 1.258210 0.569162I
b = 0.258209 0.569162I
c = 0.460381 0.041004I
d = 1.155020 0.191936I
1.89061 + 0.92430I 3.71672 0.79423I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 1.258210 + 0.569162I
b = 0.258209 + 0.569162I
c = 0.886780 0.510268I
d = 0.152828 0.487477I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 0.664531I
a = 1.258210 + 0.569162I
b = 0.258209 + 0.569162I
c = 0.460381 + 0.041004I
d = 1.155020 + 0.191936I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 0.158836 1.200140I
b = 0.84116 1.20014I
c = 0.550084 + 0.355577I
d = 0.282166 + 0.828798I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 0.158836 1.200140I
b = 0.84116 1.20014I
c = 1.78287 1.35197I
d = 1.356120 0.270046I
5.69302I 0. + 5.51057I
u = 1.073950 0.558752I
a = 0.158836 + 1.200140I
b = 0.84116 + 1.20014I
c = 0.550084 0.355577I
d = 0.282166 0.828798I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 0.158836 + 1.200140I
b = 0.84116 + 1.20014I
c = 1.78287 + 1.35197I
d = 1.356120 + 0.270046I
5.69302I 0. 5.51057I
25
V. I
u
5
= hu
5
u
3
+ d + u, 2u
5
+ 2u
4
+ · · · + c + 2, u
2
+ b, u
2
+ a +
1, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
2u
5
2u
4
+ 3u
3
+ 4u
2
2u 2
u
5
+ u
3
u
a
1
=
u
2
1
u
2
a
10
=
3u
5
2u
4
+ 4u
3
+ 4u
2
3u 2
u
5
+ u
3
u
a
2
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
6
=
2u
5
2u
4
+ 3u
3
+ 4u
2
2u 2
u
3
u
a
11
=
2u
5
+ 2u
4
3u
3
4u
2
+ 2u + 2
u
5
u
3
+ u
a
5
=
1
0
a
5
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 2
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
9
c
10
u
6
u
5
u
4
+ 2u
3
u + 1
c
2
, c
11
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
3
, c
7
u
6
+ u
5
u
4
2u
3
+ u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
2
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.082955 + 0.592379I
b = 0.917045 + 0.592379I
c = 0.575561 0.267796I
d = 0.428243 0.664531I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 0.295542I
a = 0.082955 0.592379I
b = 0.917045 0.592379I
c = 0.575561 + 0.267796I
d = 0.428243 + 0.664531I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 + 0.664531I
a = 1.258210 0.569162I
b = 0.258209 0.569162I
c = 0.02510 3.38343I
d = 1.002190 0.295542I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 0.664531I
a = 1.258210 + 0.569162I
b = 0.258209 + 0.569162I
c = 0.02510 + 3.38343I
d = 1.002190 + 0.295542I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 0.158836 1.200140I
b = 0.84116 1.20014I
c = 0.449542 0.121113I
d = 1.073950 0.558752I
5.69302I 0. + 5.51057I
u = 1.073950 0.558752I
a = 0.158836 + 1.200140I
b = 0.84116 + 1.20014I
c = 0.449542 + 0.121113I
d = 1.073950 + 0.558752I
5.69302I 0. 5.51057I
29
VI. I
v
1
= ha, d, c 1, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
1
0
a
8
=
1
0
a
4
=
1
0
a
9
=
1
0
a
1
=
0
1
a
10
=
1
0
a
2
=
1
1
a
6
=
1
0
a
11
=
1
1
a
5
=
0
1
a
5
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u 1
c
2
, c
4
, c
10
c
11
u + 1
c
3
, c
6
, c
7
c
8
, c
9
u
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
10
, c
11
y 1
c
3
, c
6
, c
7
c
8
, c
9
y
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 0
3.28987 12.0000
33
VII. I
v
2
= hc, d + 1, b, a 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
1
0
a
8
=
1
0
a
4
=
1
0
a
9
=
0
1
a
1
=
1
0
a
10
=
1
1
a
2
=
1
0
a
6
=
1
1
a
11
=
0
1
a
5
=
1
0
a
5
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
u
c
5
, c
6
, c
11
u + 1
c
8
, c
9
, c
10
u 1
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
y
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y 1
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
37
VIII. I
v
3
= ha, d + 1, c a 1, b + 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
1
0
a
8
=
1
0
a
4
=
1
0
a
9
=
1
1
a
1
=
0
1
a
10
=
0
1
a
2
=
1
1
a
6
=
0
1
a
11
=
0
1
a
5
=
0
1
a
5
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
9
u 1
c
2
, c
4
, c
6
u + 1
c
3
, c
5
, c
7
c
10
, c
11
u
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
8
, c
9
y 1
c
3
, c
5
, c
7
c
10
, c
11
y
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
0 0
41
IX. I
v
4
= hc, d + 1, av + c v 1, bv + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
9
=
0
1
a
1
=
a
a + 1
a
10
=
1
1
a
2
=
a + v
a + 1
a
6
=
1
1
a
11
=
a + 1
a + 2
a
5
=
a
a 1
a
5
=
a
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
v
2
2a 5
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
42
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
1.64493 3.42386 0.27749I
43
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1)
· (u
16
u
15
+ ··· + 4u 4)(u
19
2u
18
+ ··· + 3u 1)
c
2
, c
11
u(u + 1)
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
· (u
12
+ 9u
11
+ ··· 4u + 1)(u
16
+ 7u
15
+ ··· + 40u + 16)
· (u
19
+ 8u
18
+ ··· + 19u + 1)
c
3
, c
7
u
3
(u
6
+ u
5
u
4
2u
3
+ u + 1)
5
· (u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2)
2
· (u
19
+ 2u
18
+ ··· + 4u
2
8)
c
4
u(u + 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1)
· (u
16
u
15
+ ··· + 4u 4)(u
19
2u
18
+ ··· + 3u 1)
c
5
, c
10
u(u 1)(u + 1)(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1)
· (u
16
u
15
+ ··· + 4u 4)(u
19
2u
18
+ ··· + 3u 1)
c
6
u(u + 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
· (u
8
+ u
7
4u
6
3u
5
+ 5u
4
+ u
3
u
2
+ 3u 1)
2
· (u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1)
2
· (u
19
+ 2u
18
+ ··· 8u 4)
c
8
, c
9
u(u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
· (u
8
+ u
7
4u
6
3u
5
+ 5u
4
+ u
3
u
2
+ 3u 1)
2
· (u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1)
2
· (u
19
+ 2u
18
+ ··· 8u 4)
44
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y(y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
12
9y
11
+ ··· + 4y + 1)(y
16
7y
15
+ ··· 40y + 16)
· (y
19
8y
18
+ ··· + 19y 1)
c
2
, c
11
y(y 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
· (y
12
13y
11
+ ··· 12y + 1)(y
16
+ y
15
+ ··· 544y + 256)
· (y
19
+ 12y
18
+ ··· + 195y 1)
c
3
, c
7
y
3
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
5
· (y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4)
2
· (y
19
6y
18
+ ··· + 64y 64)
c
6
, c
8
, c
9
y(y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1)
2
· ((y
12
9y
11
+ ··· + 4y + 1)
2
)(y
19
18y
18
+ ··· + 88y 16)
45