12n
0856
(K12n
0856
)
A knot diagram
1
Linearized knot diagam
4 7 9 12 11 10 3 12 2 6 5 9
Solving Sequence
6,11
5 12
2,4
1 10 7 9 3 8
c
5
c
11
c
4
c
1
c
10
c
6
c
9
c
3
c
7
c
2
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
15
5u
14
+ ··· + 2b 4, u
15
4u
14
+ ··· + 2a + 1, u
16
+ 5u
15
+ ··· + 30u + 4i
I
u
2
= h−74u
4
a
3
+ 62u
4
a
2
+ ··· + 20a 170, 2u
4
a
3
11u
4
a + ··· 23a 23, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
I
u
3
= h−u
5
u
4
3u
3
3u
2
+ b u 1, u
8
+ 7u
6
u
5
+ 15u
4
4u
3
+ 10u
2
+ a 4u + 2,
u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 3u + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
15
5u
14
+· · ·+2b4, u
15
4u
14
+· · ·+2a+1, u
16
+5u
15
+· · ·+30u+4i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
2
=
1
2
u
15
+ 2u
14
+ ···
5
2
u
1
2
1
2
u
15
+
5
2
u
14
+ ··· +
25
2
u + 2
a
4
=
u
2
+ 1
u
4
2u
2
a
1
=
u
15
+
9
2
u
14
+ ··· + 32u +
11
2
1
2
u
15
+
5
2
u
14
+ ··· +
33
2
u + 2
a
10
=
u
u
a
7
=
u
2
+ 1
u
2
a
9
=
3
4
u
15
+
13
4
u
14
+ ··· +
89
4
u + 3
1
2
u
15
5
2
u
14
+ ···
41
2
u 3
a
3
=
u
15
9
2
u
14
+ ··· 33u
9
2
1
2
u
15
5
2
u
14
+ ···
31
2
u 2
a
8
=
1
4
u
15
+
3
4
u
14
+ ···
33
4
u 1
1
2
u
15
5
2
u
14
+ ···
39
2
u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
15
5u
14
23u
13
70u
12
184u
11
388u
10
709u
9
1086u
8
1443u
7
1613u
6
1539u
5
1210u
4
775u
3
384u
2
138u 26
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
15u
15
+ ··· 128u + 32
c
2
, c
7
, c
9
u
16
+ u
15
+ ··· 3u
2
+ 1
c
3
, c
8
, c
12
u
16
+ 10u
14
+ ··· u + 1
c
4
, c
5
, c
6
c
10
, c
11
u
16
+ 5u
15
+ ··· + 30u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
7y
15
+ ··· + 13824y + 1024
c
2
, c
7
, c
9
y
16
13y
15
+ ··· 6y + 1
c
3
, c
8
, c
12
y
16
+ 20y
15
+ ··· + 25y + 1
c
4
, c
5
, c
6
c
10
, c
11
y
16
+ 21y
15
+ ··· + 116y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.623980 + 0.651550I
a = 0.423845 0.017311I
b = 0.571868 + 0.505425I
1.44391 0.70743I 3.72290 + 0.24608I
u = 0.623980 0.651550I
a = 0.423845 + 0.017311I
b = 0.571868 0.505425I
1.44391 + 0.70743I 3.72290 0.24608I
u = 0.463938 + 1.039450I
a = 0.077415 + 0.436847I
b = 0.01364 + 1.74946I
1.07382 + 9.25014I 4.41993 6.63902I
u = 0.463938 1.039450I
a = 0.077415 0.436847I
b = 0.01364 1.74946I
1.07382 9.25014I 4.41993 + 6.63902I
u = 0.740661 + 0.206858I
a = 1.043460 + 0.692415I
b = 0.181803 0.371994I
2.76230 + 5.19350I 1.00902 5.12835I
u = 0.740661 0.206858I
a = 1.043460 0.692415I
b = 0.181803 + 0.371994I
2.76230 5.19350I 1.00902 + 5.12835I
u = 0.128783 + 1.242080I
a = 0.456102 0.659720I
b = 0.214071 1.326220I
5.44979 + 1.79581I 4.75482 3.53630I
u = 0.128783 1.242080I
a = 0.456102 + 0.659720I
b = 0.214071 + 1.326220I
5.44979 1.79581I 4.75482 + 3.53630I
u = 0.16118 + 1.52906I
a = 0.619375 0.523872I
b = 0.733331 0.959617I
5.66087 + 2.21773I 8.32065 1.76776I
u = 0.16118 1.52906I
a = 0.619375 + 0.523872I
b = 0.733331 + 0.959617I
5.66087 2.21773I 8.32065 + 1.76776I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.210462 + 0.369049I
a = 0.457557 0.529485I
b = 0.070506 + 0.348052I
0.056580 + 0.803599I 1.57400 8.67162I
u = 0.210462 0.369049I
a = 0.457557 + 0.529485I
b = 0.070506 0.348052I
0.056580 0.803599I 1.57400 + 8.67162I
u = 0.13072 + 1.73050I
a = 0.34920 2.38942I
b = 0.03210 3.29161I
10.8004 + 11.7066I 5.77296 5.44740I
u = 0.13072 1.73050I
a = 0.34920 + 2.38942I
b = 0.03210 + 3.29161I
10.8004 11.7066I 5.77296 + 5.44740I
u = 0.04027 + 1.78867I
a = 0.27009 + 1.91061I
b = 0.05891 + 2.52256I
16.5308 + 2.6330I 2.42571 2.64676I
u = 0.04027 1.78867I
a = 0.27009 1.91061I
b = 0.05891 2.52256I
16.5308 2.6330I 2.42571 + 2.64676I
6
II. I
u
2
= h−74u
4
a
3
+ 62u
4
a
2
+ · · · + 20a 170, 2u
4
a
3
11u
4
a + · · · 23a
23, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
2
=
a
1.17460a
3
u
4
0.984127a
2
u
4
+ ··· 0.317460a + 2.69841
a
4
=
u
2
+ 1
u
4
2u
2
a
1
=
0.206349a
3
u
4
+ 0.253968a
2
u
4
+ ··· + 1.92063a + 2.17460
1.65079a
3
u
4
1.03175a
2
u
4
+ ··· 2.36508a + 2.60317
a
10
=
u
u
a
7
=
u
2
+ 1
u
2
a
9
=
0.0634921a
3
u
4
+ 0.0793651a
2
u
4
+ ··· 1.20635a 0.507937
0.253968a
3
u
4
0.634921a
2
u
4
+ ··· + 0.174603a + 4.06349
a
3
=
0.206349a
3
u
4
+ 0.253968a
2
u
4
+ ··· + 0.920635a + 2.17460
2
3
u
4
a
3
2
3
u
4
a
2
+ ···
2
3
a +
8
3
a
8
=
0.0634921a
3
u
4
+ 0.682540a
2
u
4
+ ··· + 1.20635a + 0.0317460
0.253968a
3
u
4
+ 0.682540a
2
u
4
+ ··· 0.174603a 3.96825
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
3
16u
2
+ 12u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u 1)
10
c
2
, c
7
, c
9
u
20
+ u
19
+ ··· 62u 89
c
3
, c
8
, c
12
u
20
u
19
+ ··· 152u 29
c
4
, c
5
, c
6
c
10
, c
11
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
3y + 1)
10
c
2
, c
7
, c
9
y
20
9y
19
+ ··· 42648y + 7921
c
3
, c
8
, c
12
y
20
+ 11y
19
+ ··· 24612y + 841
c
4
, c
5
, c
6
c
10
, c
11
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 1.040300 0.283528I
b = 0.783355 + 0.908585I
5.76765 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 1.240690 + 0.223658I
b = 0.281646 + 0.312488I
2.12804 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 0.775190 + 0.996664I
b = 0.95815 + 1.93963I
2.12804 2.21397I 4.88568 + 4.22289I
u = 0.233677 + 0.885557I
a = 0.270298 0.182593I
b = 0.52495 1.76882I
5.76765 2.21397I 4.88568 + 4.22289I
u = 0.233677 0.885557I
a = 1.040300 + 0.283528I
b = 0.783355 0.908585I
5.76765 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 1.240690 0.223658I
b = 0.281646 0.312488I
2.12804 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 0.775190 0.996664I
b = 0.95815 1.93963I
2.12804 + 2.21397I 4.88568 4.22289I
u = 0.233677 0.885557I
a = 0.270298 + 0.182593I
b = 0.52495 + 1.76882I
5.76765 + 2.21397I 4.88568 4.22289I
u = 0.416284
a = 1.26489
b = 0.932768
3.06566 3.60880
u = 0.416284
a = 1.99317 + 1.58726I
b = 0.739269 0.509493I
4.83002 3.60880
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.416284
a = 1.99317 1.58726I
b = 0.739269 + 0.509493I
4.83002 3.60880
u = 0.416284
a = 2.78754
b = 0.368017
3.06566 3.60880
u = 0.05818 + 1.69128I
a = 0.632434 0.451910I
b = 1.58486 0.66741I
7.01045 3.33174I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.65235 1.40305I
b = 0.17965 2.05845I
14.9061 3.3317I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.64368 + 2.64197I
b = 0.51264 + 3.62749I
14.9061 3.3317I 5.91874 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.65514 2.79163I
b = 0.71308 3.44038I
7.01045 3.33174I 5.91874 + 2.36228I
u = 0.05818 1.69128I
a = 0.632434 + 0.451910I
b = 1.58486 + 0.66741I
7.01045 + 3.33174I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.65235 + 1.40305I
b = 0.17965 + 2.05845I
14.9061 + 3.3317I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.64368 2.64197I
b = 0.51264 3.62749I
14.9061 + 3.3317I 5.91874 2.36228I
u = 0.05818 1.69128I
a = 0.65514 + 2.79163I
b = 0.71308 + 3.44038I
7.01045 + 3.33174I 5.91874 2.36228I
11
III. I
u
3
= h−u
5
u
4
3u
3
3u
2
+ b u 1, u
8
+ 7u
6
+ · · · + a + 2, u
9
+
7u
7
+ 16u
5
+ 13u
3
+ 3u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
2
=
u
8
7u
6
+ u
5
15u
4
+ 4u
3
10u
2
+ 4u 2
u
5
+ u
4
+ 3u
3
+ 3u
2
+ u + 1
a
4
=
u
2
+ 1
u
4
2u
2
a
1
=
u
8
6u
6
+ u
5
11u
4
+ 4u
3
7u
2
+ 3u 2
u
6
+ u
5
+ 5u
4
+ 4u
3
+ 6u
2
+ 2u + 1
a
10
=
u
u
a
7
=
u
2
+ 1
u
2
a
9
=
u
6
u
5
+ 5u
4
4u
3
+ 7u
2
3u + 3
u
8
+ u
7
6u
6
+ 5u
5
11u
4
+ 7u
3
6u
2
+ 3u
a
3
=
u
8
6u
6
+ u
5
11u
4
+ 4u
3
6u
2
+ 4u 1
u
6
+ u
5
+ 4u
4
+ 3u
3
+ 4u
2
+ u + 1
a
8
=
u
5
+ u
4
4u
3
+ 4u
2
3u + 3
u
7
u
6
+ 5u
5
4u
4
+ 7u
3
3u
2
+ 3u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
+ 2u
7
+ 24u
6
+ 10u
5
+ 44u
4
+ 14u
3
+ 25u
2
+ 3u + 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
4u
8
+ 6u
7
8u
6
+ 13u
5
9u
4
+ u
3
5u
2
+ 3u + 3
c
2
, c
9
u
9
+ u
8
2u
7
2u
6
+ u
5
+ u
3
+ 2u
2
+ 1
c
3
, c
8
u
9
+ 2u
7
+ u
6
+ u
4
2u
3
2u
2
+ u + 1
c
4
, c
5
, c
6
u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 3u + 1
c
7
u
9
u
8
2u
7
+ 2u
6
+ u
5
+ u
3
2u
2
1
c
10
, c
11
u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 3u 1
c
12
u
9
+ 2u
7
u
6
u
4
2u
3
+ 2u
2
+ u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
4y
8
2y
7
+ 22y
6
+ 3y
5
75y
4
+ 37y
3
+ 35y
2
+ 39y 9
c
2
, c
7
, c
9
y
9
5y
8
+ 10y
7
6y
6
7y
5
+ 8y
4
+ 5y
3
4y
2
4y 1
c
3
, c
8
, c
12
y
9
+ 4y
8
+ 4y
7
5y
6
8y
5
+ 7y
4
+ 6y
3
10y
2
+ 5y 1
c
4
, c
5
, c
6
c
10
, c
11
y
9
+ 14y
8
+ 81y
7
+ 250y
6
+ 444y
5
+ 458y
4
+ 265y
3
+ 78y
2
+ 9y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.176178 + 1.056080I
a = 0.772923 0.371228I
b = 0.67471 1.53869I
7.25976 + 1.49693I 10.69582 1.07320I
u = 0.176178 1.056080I
a = 0.772923 + 0.371228I
b = 0.67471 + 1.53869I
7.25976 1.49693I 10.69582 + 1.07320I
u = 0.252500 + 0.604050I
a = 0.76253 + 1.27109I
b = 0.323758 + 0.973050I
3.19201 0.85520I 1.77424 + 0.81850I
u = 0.252500 0.604050I
a = 0.76253 1.27109I
b = 0.323758 0.973050I
3.19201 + 0.85520I 1.77424 0.81850I
u = 0.09972 + 1.60032I
a = 0.374760 1.005510I
b = 0.801978 1.133290I
4.49433 2.25221I 0.93167 + 1.22444I
u = 0.09972 1.60032I
a = 0.374760 + 1.005510I
b = 0.801978 + 1.133290I
4.49433 + 2.25221I 0.93167 1.22444I
u = 0.255288
a = 3.80617
b = 0.893478
3.76466 10.8130
u = 0.04840 + 1.76025I
a = 0.53872 + 2.02200I
b = 0.24975 + 2.75063I
17.5195 + 2.4733I 11.19170 0.90094I
u = 0.04840 1.76025I
a = 0.53872 2.02200I
b = 0.24975 2.75063I
17.5195 2.4733I 11.19170 + 0.90094I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
10
)(u
9
4u
8
+ ··· + 3u + 3)
· (u
16
15u
15
+ ··· 128u + 32)
c
2
, c
9
(u
9
+ u
8
+ ··· + 2u
2
+ 1)(u
16
+ u
15
+ ··· 3u
2
+ 1)
· (u
20
+ u
19
+ ··· 62u 89)
c
3
, c
8
(u
9
+ 2u
7
+ ··· + u + 1)(u
16
+ 10u
14
+ ··· u + 1)
· (u
20
u
19
+ ··· 152u 29)
c
4
, c
5
, c
6
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
4
(u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 3u + 1)
· (u
16
+ 5u
15
+ ··· + 30u + 4)
c
7
(u
9
u
8
+ ··· 2u
2
1)(u
16
+ u
15
+ ··· 3u
2
+ 1)
· (u
20
+ u
19
+ ··· 62u 89)
c
10
, c
11
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
4
(u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 3u 1)
· (u
16
+ 5u
15
+ ··· + 30u + 4)
c
12
(u
9
+ 2u
7
+ ··· + u 1)(u
16
+ 10u
14
+ ··· u + 1)
· (u
20
u
19
+ ··· 152u 29)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
3y + 1)
10
· (y
9
4y
8
2y
7
+ 22y
6
+ 3y
5
75y
4
+ 37y
3
+ 35y
2
+ 39y 9)
· (y
16
7y
15
+ ··· + 13824y + 1024)
c
2
, c
7
, c
9
(y
9
5y
8
+ 10y
7
6y
6
7y
5
+ 8y
4
+ 5y
3
4y
2
4y 1)
· (y
16
13y
15
+ ··· 6y + 1)(y
20
9y
19
+ ··· 42648y + 7921)
c
3
, c
8
, c
12
(y
9
+ 4y
8
+ 4y
7
5y
6
8y
5
+ 7y
4
+ 6y
3
10y
2
+ 5y 1)
· (y
16
+ 20y
15
+ ··· + 25y + 1)(y
20
+ 11y
19
+ ··· 24612y + 841)
c
4
, c
5
, c
6
c
10
, c
11
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
· (y
9
+ 14y
8
+ 81y
7
+ 250y
6
+ 444y
5
+ 458y
4
+ 265y
3
+ 78y
2
+ 9y 1)
· (y
16
+ 21y
15
+ ··· + 116y + 16)
17