12n
0867
(K12n
0867
)
A knot diagram
1
Linearized knot diagam
4 6 10 8 12 3 1 6 7 4 7 5
Solving Sequence
3,10
4
7,11
12 6 2 1 5 9 8
c
3
c
10
c
11
c
6
c
2
c
1
c
5
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 81072715476u
25
+ 52576364860u
24
+ ··· + 3386368973a + 151407587225,
u
26
7u
24
+ ··· 2u 1i
I
u
2
= h−6.03995 × 10
146
u
63
9.04955 × 10
146
u
62
+ ··· + 5.66297 × 10
148
b 4.48747 × 10
149
,
1.13952 × 10
150
u
63
1.92915 × 10
150
u
62
+ ··· + 4.19060 × 10
150
a 1.96444 × 10
152
,
u
64
+ 2u
63
+ ··· + 171u + 37i
I
u
3
= hb + u, 106u
13
38u
12
+ ··· + 29a + 111, u
14
4u
12
+ 8u
10
10u
8
+ u
7
+ 5u
6
u
5
+ 2u
4
u
3
2u
2
+ u + 1i
I
u
4
= hu
11
4u
9
+ 5u
7
3u
5
+ 5u
3
+ b 4u,
3u
11
4u
10
+ 11u
9
+ 14u
8
11u
7
13u
6
+ 4u
5
+ 5u
4
12u
3
17u
2
+ 2a + 8u + 8,
u
12
4u
10
+ 5u
8
3u
6
+ 5u
4
4u
2
+ 1i
I
u
5
= hb + u 1, a + u 1, u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 118 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 8.11 × 10
10
u
25
+ 5.26 × 10
10
u
24
+ · · · + 3.39 × 10
9
a + 1.51 ×
10
11
, u
26
7u
24
+ · · · 2u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
23.9409u
25
15.5259u
24
+ ··· 17.7599u 44.7109
u
a
11
=
u
u
3
+ u
a
12
=
14.9186u
25
4.47512u
24
+ ··· + 9.17407u 31.5817
5.21774u
25
3.42933u
24
+ ··· 2.57347u 10.1364
a
6
=
23.9409u
25
15.5259u
24
+ ··· 18.7599u 44.7109
u
a
2
=
15.5259u
25
+ 7.24164u
24
+ ··· + 3.17090u + 24.9409
u
2
a
1
=
20.9154u
25
+ 9.26554u
24
+ ··· + 2.12830u + 32.1825
1.96019u
25
0.497707u
24
+ ··· + 1.34172u 2.02390
a
5
=
46.2583u
25
+ 23.0203u
24
+ ··· + 7.38663u + 78.1426
2.51848u
25
0.734211u
24
+ ··· + 3.08951u 4.29711
a
9
=
27.4397u
25
10.7838u
24
+ ··· + 6.93525u 57.8914
7.24164u
25
5.38952u
24
+ ··· 6.11087u 15.5259
a
8
=
17.7388u
25
9.73803u
24
+ ··· 4.81229u 36.4461
2.02390u
25
1.96019u
24
+ ··· 2.53740u 5.38952
(ii) Obstruction class = 1
(iii) Cusp Shapes =
39142336274
3386368973
u
25
35272648620
3386368973
u
24
+ ···
7281974472
260489921
u
23728803050
3386368973
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
21u
25
+ ··· + 7680u 512
c
2
, c
3
, c
6
c
10
u
26
7u
24
+ ··· + 2u 1
c
4
, c
7
u
26
+ 5u
24
+ ··· 8u + 1
c
5
, c
12
u
26
11u
25
+ ··· + 304u 24
c
8
, c
11
u
26
2u
25
+ ··· 80u + 19
c
9
u
26
21u
25
+ ··· 16284u + 1096
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
y
25
+ ··· 3932160y + 262144
c
2
, c
3
, c
6
c
10
y
26
14y
25
+ ··· 24y + 1
c
4
, c
7
y
26
+ 10y
25
+ ··· 36y + 1
c
5
, c
12
y
26
+ 17y
25
+ ··· 2656y + 576
c
8
, c
11
y
26
+ 22y
25
+ ··· 7236y + 361
c
9
y
26
+ 5y
25
+ ··· 35876688y + 1201216
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.783583 + 0.497565I
a = 0.552401 + 0.963003I
b = 0.783583 + 0.497565I
2.97189 1.12917I 11.90635 + 3.31876I
u = 0.783583 0.497565I
a = 0.552401 0.963003I
b = 0.783583 0.497565I
2.97189 + 1.12917I 11.90635 3.31876I
u = 1.086820 + 0.182504I
a = 0.465254 0.140063I
b = 1.086820 + 0.182504I
1.13119 2.61384I 9.69860 + 3.81800I
u = 1.086820 0.182504I
a = 0.465254 + 0.140063I
b = 1.086820 0.182504I
1.13119 + 2.61384I 9.69860 3.81800I
u = 1.086220 + 0.199675I
a = 0.091019 + 0.925043I
b = 1.086220 + 0.199675I
2.34848 2.40757I 11.72048 + 1.43873I
u = 1.086220 0.199675I
a = 0.091019 0.925043I
b = 1.086220 0.199675I
2.34848 + 2.40757I 11.72048 1.43873I
u = 0.793430 + 0.080832I
a = 0.31402 + 1.95659I
b = 0.793430 + 0.080832I
2.86846 2.53404I 13.29449 + 3.41848I
u = 0.793430 0.080832I
a = 0.31402 1.95659I
b = 0.793430 0.080832I
2.86846 + 2.53404I 13.29449 3.41848I
u = 0.843436 + 0.905238I
a = 0.58396 + 1.35722I
b = 0.843436 + 0.905238I
8.06090 4.16985I 4.50695 + 1.21035I
u = 0.843436 0.905238I
a = 0.58396 1.35722I
b = 0.843436 0.905238I
8.06090 + 4.16985I 4.50695 1.21035I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.27855
a = 1.03578
b = 1.27855
6.69425 5.31560
u = 0.947242 + 0.861971I
a = 0.449801 + 1.090630I
b = 0.947242 + 0.861971I
2.70506 1.24876I 6.24886 0.86995I
u = 0.947242 0.861971I
a = 0.449801 1.090630I
b = 0.947242 0.861971I
2.70506 + 1.24876I 6.24886 + 0.86995I
u = 1.152600 + 0.696627I
a = 0.876822 + 1.038740I
b = 1.152600 + 0.696627I
4.95525 4.75697I 1.31627 + 5.46968I
u = 1.152600 0.696627I
a = 0.876822 1.038740I
b = 1.152600 0.696627I
4.95525 + 4.75697I 1.31627 5.46968I
u = 0.983614 + 0.927361I
a = 0.149538 + 1.130440I
b = 0.983614 + 0.927361I
6.37802 + 8.08526I 2.98916 6.73051I
u = 0.983614 0.927361I
a = 0.149538 1.130440I
b = 0.983614 0.927361I
6.37802 8.08526I 2.98916 + 6.73051I
u = 1.18953 + 0.78832I
a = 0.510132 + 1.196150I
b = 1.18953 + 0.78832I
0.89949 + 11.85540I 9.91635 8.77683I
u = 1.18953 0.78832I
a = 0.510132 1.196150I
b = 1.18953 0.78832I
0.89949 11.85540I 9.91635 + 8.77683I
u = 0.554736 + 0.043432I
a = 0.54182 + 5.22386I
b = 0.554736 + 0.043432I
2.22203 + 4.95013I 10.15122 + 4.02452I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.554736 0.043432I
a = 0.54182 5.22386I
b = 0.554736 0.043432I
2.22203 4.95013I 10.15122 4.02452I
u = 1.19248 + 0.84134I
a = 0.41575 + 1.36350I
b = 1.19248 + 0.84134I
5.8498 17.7947I 7.31708 + 9.41599I
u = 1.19248 0.84134I
a = 0.41575 1.36350I
b = 1.19248 0.84134I
5.8498 + 17.7947I 7.31708 9.41599I
u = 0.364116 + 0.322517I
a = 0.38283 1.70403I
b = 0.364116 + 0.322517I
3.28701 + 1.79973I 8.03339 3.90573I
u = 0.364116 0.322517I
a = 0.38283 + 1.70403I
b = 0.364116 0.322517I
3.28701 1.79973I 8.03339 + 3.90573I
u = 0.364326
a = 0.507910
b = 0.364326
0.612463 16.1170
7
II. I
u
2
= h−6.04 × 10
146
u
63
9.05 × 10
146
u
62
+ · · · + 5.66 × 10
148
b 4.49 ×
10
149
, 1.14 × 10
150
u
63
1.93 × 10
150
u
62
+ · · · + 4.19 × 10
150
a 1.96 ×
10
152
, u
64
+ 2u
63
+ · · · + 171u + 37i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
0.271924u
63
+ 0.460353u
62
+ ··· + 44.0665u + 46.8772
0.0106657u
63
+ 0.0159802u
62
+ ··· + 13.7655u + 7.92425
a
11
=
u
u
3
+ u
a
12
=
0.624613u
63
+ 1.10102u
62
+ ··· + 36.8238u + 101.708
0.00461596u
63
+ 0.0201036u
62
+ ··· 5.67814u 1.77195
a
6
=
0.261258u
63
+ 0.444372u
62
+ ··· + 30.3010u + 38.9530
0.0106657u
63
+ 0.0159802u
62
+ ··· + 13.7655u + 7.92425
a
2
=
0.0485882u
63
+ 0.0990616u
62
+ ··· + 25.2490u + 3.73071
0.0203311u
63
+ 0.00581512u
62
+ ··· + 9.57805u + 11.5410
a
1
=
0.0841362u
63
+ 0.140025u
62
+ ··· + 32.7070u + 15.2019
0.0299378u
63
+ 0.0305460u
62
+ ··· + 5.74066u + 10.4261
a
5
=
0.406605u
63
+ 0.742625u
62
+ ··· 16.3394u + 64.2704
0.0987727u
63
0.181070u
62
+ ··· + 3.66166u 12.0388
a
9
=
0.614690u
63
+ 1.08226u
62
+ ··· + 40.7236u + 104.602
0.0329619u
63
0.0652260u
62
+ ··· + 3.48648u 2.55001
a
8
=
0.207145u
63
+ 0.346285u
62
+ ··· + 38.5161u + 33.4383
0.0910540u
63
+ 0.176548u
62
+ ··· 11.9099u + 7.81179
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.168425u
63
0.321826u
62
+ ··· + 44.9179u 8.92647
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
32
+ 7u
31
+ ··· + 12u + 1)
2
c
2
, c
3
, c
6
c
10
u
64
2u
63
+ ··· 171u + 37
c
4
, c
7
u
64
u
63
+ ··· 4808u 587
c
5
, c
12
(u
32
+ 5u
31
+ ··· 69u 8)
2
c
8
, c
11
u
64
+ 17u
62
+ ··· 264620u + 37823
c
9
(u
32
+ 13u
31
+ ··· 1313u 169)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
32
9y
31
+ ··· 46y + 1)
2
c
2
, c
3
, c
6
c
10
y
64
18y
63
+ ··· 85481y + 1369
c
4
, c
7
y
64
+ 9y
63
+ ··· + 6985670y + 344569
c
5
, c
12
(y
32
+ 25y
31
+ ··· 505y + 64)
2
c
8
, c
11
y
64
+ 34y
63
+ ··· 493922520582y + 1430579329
c
9
(y
32
15y
31
+ ··· 543335y + 28561)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.747581 + 0.648100I
a = 0.817423 1.099650I
b = 0.61201 1.28970I
6.29180 0.24514I 1.25097 + 0.92202I
u = 0.747581 0.648100I
a = 0.817423 + 1.099650I
b = 0.61201 + 1.28970I
6.29180 + 0.24514I 1.25097 0.92202I
u = 0.884153 + 0.502618I
a = 0.34258 1.42349I
b = 0.228782 + 0.015105I
3.14442 + 2.14473I 8.00000 2.29641I
u = 0.884153 0.502618I
a = 0.34258 + 1.42349I
b = 0.228782 0.015105I
3.14442 2.14473I 8.00000 + 2.29641I
u = 0.598567 + 0.826676I
a = 0.244371 + 0.711038I
b = 0.897842 + 1.021270I
6.68309 1.04909I 0.34328 + 1.82313I
u = 0.598567 0.826676I
a = 0.244371 0.711038I
b = 0.897842 1.021270I
6.68309 + 1.04909I 0.34328 1.82313I
u = 0.803262 + 0.664543I
a = 0.62981 1.29173I
b = 0.762751 0.155996I
2.72858 3.38419I 16.1240 + 2.3766I
u = 0.803262 0.664543I
a = 0.62981 + 1.29173I
b = 0.762751 + 0.155996I
2.72858 + 3.38419I 16.1240 2.3766I
u = 0.725397 + 0.757869I
a = 1.002150 0.379337I
b = 0.987211 0.961056I
4.99655 2.48694I 2.71838 + 6.51745I
u = 0.725397 0.757869I
a = 1.002150 + 0.379337I
b = 0.987211 + 0.961056I
4.99655 + 2.48694I 2.71838 6.51745I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.036330 + 0.282218I
a = 0.10487 1.70181I
b = 0.555751 0.728079I
0.07031 6.41881I 9.84201 + 8.36999I
u = 1.036330 0.282218I
a = 0.10487 + 1.70181I
b = 0.555751 + 0.728079I
0.07031 + 6.41881I 9.84201 8.36999I
u = 0.555751 + 0.728079I
a = 1.31008 1.51039I
b = 1.036330 0.282218I
0.07031 + 6.41881I 9.84201 8.36999I
u = 0.555751 0.728079I
a = 1.31008 + 1.51039I
b = 1.036330 + 0.282218I
0.07031 6.41881I 9.84201 + 8.36999I
u = 0.956175 + 0.585855I
a = 1.10599 1.51798I
b = 0.771652 0.999575I
5.62629 4.62037I 0. + 5.91719I
u = 0.956175 0.585855I
a = 1.10599 + 1.51798I
b = 0.771652 + 0.999575I
5.62629 + 4.62037I 0. 5.91719I
u = 0.763512 + 0.372948I
a = 0.502038 0.729370I
b = 1.54016 0.18960I
1.90078 6.98033I 8.48263 + 9.40811I
u = 0.763512 0.372948I
a = 0.502038 + 0.729370I
b = 1.54016 + 0.18960I
1.90078 + 6.98033I 8.48263 9.40811I
u = 0.848626 + 0.788875I
a = 0.463802 0.431146I
b = 0.848626 0.788875I
1.48320 8.00000 + 0.I
u = 0.848626 0.788875I
a = 0.463802 + 0.431146I
b = 0.848626 + 0.788875I
1.48320 8.00000 + 0.I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.840232
a = 1.60863
b = 1.33920
5.92790 18.3780
u = 0.916724 + 0.760771I
a = 0.42171 1.47210I
b = 1.164150 0.693868I
1.26936 5.84614I 0
u = 0.916724 0.760771I
a = 0.42171 + 1.47210I
b = 1.164150 + 0.693868I
1.26936 + 5.84614I 0
u = 0.781283 + 0.173339I
a = 1.41438 + 0.92421I
b = 1.381380 0.269991I
1.96444 + 4.61759I 12.02099 + 3.00810I
u = 0.781283 0.173339I
a = 1.41438 0.92421I
b = 1.381380 + 0.269991I
1.96444 4.61759I 12.02099 3.00810I
u = 0.537679 + 1.075690I
a = 0.427102 + 0.566369I
b = 0.880132 + 0.860062I
2.89973 5.13287I 0
u = 0.537679 1.075690I
a = 0.427102 0.566369I
b = 0.880132 0.860062I
2.89973 + 5.13287I 0
u = 0.983968 + 0.716147I
a = 0.34588 1.65595I
b = 1.26383 0.93490I
4.21523 + 8.10070I 0
u = 0.983968 0.716147I
a = 0.34588 + 1.65595I
b = 1.26383 + 0.93490I
4.21523 8.10070I 0
u = 0.762751 + 0.155996I
a = 0.06884 1.92313I
b = 0.803262 0.664543I
2.72858 + 3.38419I 16.1240 2.3766I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.762751 0.155996I
a = 0.06884 + 1.92313I
b = 0.803262 + 0.664543I
2.72858 3.38419I 16.1240 + 2.3766I
u = 0.880132 + 0.860062I
a = 0.399579 + 0.566471I
b = 0.537679 + 1.075690I
2.89973 5.13287I 0
u = 0.880132 0.860062I
a = 0.399579 0.566471I
b = 0.537679 1.075690I
2.89973 + 5.13287I 0
u = 0.771652 + 0.999575I
a = 0.43843 1.60921I
b = 0.956175 0.585855I
5.62629 + 4.62037I 0
u = 0.771652 0.999575I
a = 0.43843 + 1.60921I
b = 0.956175 + 0.585855I
5.62629 4.62037I 0
u = 0.086806 + 1.285450I
a = 0.352088 0.327075I
b = 0.446778 0.106968I
4.09830 1.29586I 0
u = 0.086806 1.285450I
a = 0.352088 + 0.327075I
b = 0.446778 + 0.106968I
4.09830 + 1.29586I 0
u = 0.982919 + 0.838355I
a = 0.520314 + 0.687373I
b = 0.650640 + 1.170750I
7.61349 + 10.61140I 0
u = 0.982919 0.838355I
a = 0.520314 0.687373I
b = 0.650640 1.170750I
7.61349 10.61140I 0
u = 1.33920
a = 1.00927
b = 0.840232
5.92790 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.650640 + 1.170750I
a = 0.550727 + 0.622987I
b = 0.982919 + 0.838355I
7.61349 + 10.61140I 0
u = 0.650640 1.170750I
a = 0.550727 0.622987I
b = 0.982919 0.838355I
7.61349 10.61140I 0
u = 1.164150 + 0.693868I
a = 0.566257 1.221150I
b = 0.916724 0.760771I
1.26936 + 5.84614I 0
u = 1.164150 0.693868I
a = 0.566257 + 1.221150I
b = 0.916724 + 0.760771I
1.26936 5.84614I 0
u = 0.897842 + 1.021270I
a = 0.479918 + 0.296866I
b = 0.598567 + 0.826676I
6.68309 1.04909I 0
u = 0.897842 1.021270I
a = 0.479918 0.296866I
b = 0.598567 0.826676I
6.68309 + 1.04909I 0
u = 0.571558 + 0.247045I
a = 0.902392 0.212211I
b = 1.51966 + 0.17892I
4.37128 + 1.08985I 2.66044 9.56608I
u = 0.571558 0.247045I
a = 0.902392 + 0.212211I
b = 1.51966 0.17892I
4.37128 1.08985I 2.66044 + 9.56608I
u = 0.987211 + 0.961056I
a = 0.282372 0.765497I
b = 0.725397 0.757869I
4.99655 + 2.48694I 0
u = 0.987211 0.961056I
a = 0.282372 + 0.765497I
b = 0.725397 + 0.757869I
4.99655 2.48694I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.381380 + 0.269991I
a = 0.947212 0.160105I
b = 0.781283 0.173339I
1.96444 4.61759I 0
u = 1.381380 0.269991I
a = 0.947212 + 0.160105I
b = 0.781283 + 0.173339I
1.96444 + 4.61759I 0
u = 0.61201 + 1.28970I
a = 0.582538 0.749981I
b = 0.747581 0.648100I
6.29180 + 0.24514I 0
u = 0.61201 1.28970I
a = 0.582538 + 0.749981I
b = 0.747581 + 0.648100I
6.29180 0.24514I 0
u = 1.51966 + 0.17892I
a = 0.361017 0.109388I
b = 0.571558 + 0.247045I
4.37128 + 1.08985I 0
u = 1.51966 0.17892I
a = 0.361017 + 0.109388I
b = 0.571558 0.247045I
4.37128 1.08985I 0
u = 0.446778 + 0.106968I
a = 0.739730 1.126570I
b = 0.086806 1.285450I
4.09830 + 1.29586I 13.7807 5.0145I
u = 0.446778 0.106968I
a = 0.739730 + 1.126570I
b = 0.086806 + 1.285450I
4.09830 1.29586I 13.7807 + 5.0145I
u = 1.54016 + 0.18960I
a = 0.390037 0.288022I
b = 0.763512 0.372948I
1.90078 + 6.98033I 0
u = 1.54016 0.18960I
a = 0.390037 + 0.288022I
b = 0.763512 + 0.372948I
1.90078 6.98033I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.26383 + 0.93490I
a = 0.257820 1.283980I
b = 0.983968 0.716147I
4.21523 8.10070I 0
u = 1.26383 0.93490I
a = 0.257820 + 1.283980I
b = 0.983968 + 0.716147I
4.21523 + 8.10070I 0
u = 0.228782 + 0.015105I
a = 4.74409 + 4.43535I
b = 0.884153 + 0.502618I
3.14442 + 2.14473I 8.08474 2.29641I
u = 0.228782 0.015105I
a = 4.74409 4.43535I
b = 0.884153 0.502618I
3.14442 2.14473I 8.08474 + 2.29641I
17
III. I
u
3
= hb + u, 106u
13
38u
12
+ · · · + 29a + 111, u
14
4u
12
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
3.65517u
13
+ 1.31034u
12
+ ··· + 0.586207u 3.82759
u
a
11
=
u
u
3
+ u
a
12
=
1.65517u
13
+ 0.689655u
12
+ ··· 7.58621u + 4.82759
1.13793u
13
0.275862u
12
+ ··· + 0.0344828u + 1.06897
a
6
=
3.65517u
13
+ 1.31034u
12
+ ··· + 1.58621u 3.82759
u
a
2
=
1.31034u
13
+ 1.62069u
12
+ ··· + 0.172414u 2.65517
u
2
a
1
=
1.55172u
13
+ 2.10345u
12
+ ··· 0.137931u 4.27586
0.0344828u
13
+ 0.0689655u
12
+ ··· + 0.241379u + 0.482759
a
5
=
3.79310u
13
3.58621u
12
+ ··· + 1.44828u + 5.89655
0.137931u
13
+ 0.275862u
12
+ ··· 0.0344828u 1.06897
a
9
=
0.241379u
13
+ 1.51724u
12
+ ··· 12.6897u + 4.62069
1.62069u
13
0.241379u
12
+ ··· 1.34483u + 1.31034
a
8
=
0.275862u
13
+ 0.551724u
12
+ ··· 5.06897u + 0.862069
0.482759u
13
+ 0.0344828u
12
+ ··· 0.379310u + 0.241379
(ii) Obstruction class = 1
(iii) Cusp Shapes =
118
29
u
13
207
29
u
12
18u
11
+ 28u
10
+
1002
29
u
9
1511
29
u
8
1261
29
u
7
+
1944
29
u
6
+
327
29
u
5
830
29
u
4
+
591
29
u
3
749
29
u
2
+
44
29
u +
581
29
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
4u
13
+ ··· 2u + 1
c
2
, c
10
u
14
4u
12
+ 8u
10
10u
8
u
7
+ 5u
6
+ u
5
+ 2u
4
+ u
3
2u
2
u + 1
c
3
, c
6
u
14
4u
12
+ 8u
10
10u
8
+ u
7
+ 5u
6
u
5
+ 2u
4
u
3
2u
2
+ u + 1
c
4
, c
7
u
14
+ u
11
+ 5u
10
u
9
+ u
7
+ 3u
6
6u
5
+ u
4
+ 2u
3
+ 2u
2
3u + 1
c
5
u
14
+ 4u
13
+ ··· + 8u + 1
c
8
, c
11
u
14
+ 2u
13
+ ··· + 27u + 7
c
9
u
14
+ 14u
13
+ ··· + 2333u + 319
c
12
u
14
4u
13
+ ··· 8u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
+ 3y
11
+ ··· 2y + 1
c
2
, c
3
, c
6
c
10
y
14
8y
13
+ ··· 5y + 1
c
4
, c
7
y
14
+ 10y
12
+ ··· 5y + 1
c
5
, c
12
y
14
+ 10y
13
+ ··· + 4y + 1
c
8
, c
11
y
14
+ 12y
13
+ ··· y + 49
c
9
y
14
+ 10y
13
+ ··· 227877y + 101761
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.705264 + 0.481548I
a = 0.65418 1.69656I
b = 0.705264 0.481548I
1.87287 + 3.91500I 7.22173 7.63901I
u = 0.705264 0.481548I
a = 0.65418 + 1.69656I
b = 0.705264 + 0.481548I
1.87287 3.91500I 7.22173 + 7.63901I
u = 1.197260 + 0.164540I
a = 0.544579 0.736189I
b = 1.197260 0.164540I
3.96804 + 6.37801I 14.6039 5.9971I
u = 1.197260 0.164540I
a = 0.544579 + 0.736189I
b = 1.197260 + 0.164540I
3.96804 6.37801I 14.6039 + 5.9971I
u = 1.020540 + 0.674600I
a = 0.91974 1.32074I
b = 1.020540 0.674600I
3.82504 + 4.57037I 9.01908 5.07868I
u = 1.020540 0.674600I
a = 0.91974 + 1.32074I
b = 1.020540 + 0.674600I
3.82504 4.57037I 9.01908 + 5.07868I
u = 0.032890 + 0.769702I
a = 0.543523 0.781156I
b = 0.032890 0.769702I
4.81955 + 1.15266I 0.22976 1.43233I
u = 0.032890 0.769702I
a = 0.543523 + 0.781156I
b = 0.032890 + 0.769702I
4.81955 1.15266I 0.22976 + 1.43233I
u = 1.249640 + 0.050920I
a = 0.990118 + 0.119715I
b = 1.249640 0.050920I
6.96809 + 0.13335I 21.1617 9.9291I
u = 1.249640 0.050920I
a = 0.990118 0.119715I
b = 1.249640 + 0.050920I
6.96809 0.13335I 21.1617 + 9.9291I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.062670 + 0.800901I
a = 0.25516 1.44180I
b = 1.062670 0.800901I
3.51744 7.29600I 8.08201 + 4.40748I
u = 1.062670 0.800901I
a = 0.25516 + 1.44180I
b = 1.062670 + 0.800901I
3.51744 + 7.29600I 8.08201 4.40748I
u = 0.577867 + 0.218364I
a = 0.47866 4.77205I
b = 0.577867 0.218364I
2.29191 5.40173I 7.1818 + 12.6437I
u = 0.577867 0.218364I
a = 0.47866 + 4.77205I
b = 0.577867 + 0.218364I
2.29191 + 5.40173I 7.1818 12.6437I
22
IV. I
u
4
= hu
11
4u
9
+ 5u
7
3u
5
+ 5u
3
+ b 4u, 3u
11
4u
10
+ · · · + 2a +
8, u
12
4u
10
+ 5u
8
3u
6
+ 5u
4
4u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
7
=
3
2
u
11
+ 2u
10
+ ··· 4u 4
u
11
+ 4u
9
5u
7
+ 3u
5
5u
3
+ 4u
a
11
=
u
u
3
+ u
a
12
=
5
2
u
11
7
2
u
10
+ ··· +
13
2
u +
13
2
2u
11
+ u
10
+ ···
11
2
u 2
a
6
=
5
2
u
11
+ 2u
10
+ ··· 8u 4
u
11
+ 4u
9
5u
7
+ 3u
5
5u
3
+ 4u
a
2
=
4u
11
+
5
2
u
10
+ ···
15
2
u 7
u
10
+ 4u
8
5u
6
+ 3u
4
5u
2
+ 4
a
1
=
6u
11
+ 2u
10
+ ···
23
2
u
11
2
u
11
u
10
+ ··· + 2u +
7
2
a
5
=
1
2
u
10
u
9
+ ··· 4u
3
2
5
2
u
11
+
3
2
u
10
+ ··· 3u
3
2
a
9
=
2u
11
3u
10
+ ··· +
7
2
u +
11
2
3
2
u
11
+ 2u
10
+ ··· 3u 4
a
8
=
7
2
u
11
11
2
u
10
+ ··· + 3u +
17
2
3u
11
+ 4u
10
+ ··· 5u
15
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 12u
11
+ 9u
10
43u
9
31u
8
+ 42u
7
+ 25u
6
17u
5
7u
4
+ 52u
3
+ 41u
2
27u 5
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ u
5
2u
3
+ u + 1)
2
c
2
, c
3
, c
6
c
10
u
12
4u
10
+ 5u
8
3u
6
+ 5u
4
4u
2
+ 1
c
4
, c
7
u
12
u
11
+ 2u
10
+ 2u
9
+ 4u
8
u
7
+ 2u
6
u
5
+ 4u
4
+ 2u
3
+ 2u
2
u + 1
c
5
(u
6
2u
5
+ 4u
4
5u
3
+ 5u
2
4u + 2)
2
c
8
, c
11
u
12
6u
11
+ ··· 5u + 1
c
9
(u
6
u
5
+ 2u
3
u + 1)
2
c
12
(u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)
2
c
2
, c
3
, c
6
c
10
(y
6
4y
5
+ 5y
4
3y
3
+ 5y
2
4y + 1)
2
c
4
, c
7
y
12
+ 3y
11
+ ··· + 3y + 1
c
5
, c
12
(y
6
+ 4y
5
+ 6y
4
+ 3y
3
+ y
2
+ 4y + 4)
2
c
8
, c
11
y
12
4y
10
+ ··· y + 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.540561 + 0.841305I
a = 0.156629 0.987658I
b = 0.540561 0.841305I
4.99541 + 1.18132I 3.40277 1.32440I
u = 0.540561 0.841305I
a = 0.156629 + 0.987658I
b = 0.540561 + 0.841305I
4.99541 1.18132I 3.40277 + 1.32440I
u = 0.540561 + 0.841305I
a = 0.833234 0.552921I
b = 0.540561 0.841305I
4.99541 + 1.18132I 3.40277 1.32440I
u = 0.540561 0.841305I
a = 0.833234 + 0.552921I
b = 0.540561 + 0.841305I
4.99541 1.18132I 3.40277 + 1.32440I
u = 0.696578 + 0.098981I
a = 0.829073 0.673309I
b = 1.40718 0.19996I
4.73737 0.78507I 17.3864 1.2123I
u = 0.696578 0.098981I
a = 0.829073 + 0.673309I
b = 1.40718 + 0.19996I
4.73737 + 0.78507I 17.3864 + 1.2123I
u = 0.696578 + 0.098981I
a = 1.07796 + 1.55420I
b = 1.40718 0.19996I
1.90298 5.20040I 11.2108 + 9.9662I
u = 0.696578 0.098981I
a = 1.07796 1.55420I
b = 1.40718 + 0.19996I
1.90298 + 5.20040I 11.2108 9.9662I
u = 1.40718 + 0.19996I
a = 0.301314 + 0.434433I
b = 0.696578 0.098981I
4.73737 0.78507I 17.3864 1.2123I
u = 1.40718 0.19996I
a = 0.301314 0.434433I
b = 0.696578 + 0.098981I
4.73737 + 0.78507I 17.3864 + 1.2123I
26
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.40718 + 0.19996I
a = 0.726806 0.590256I
b = 0.696578 0.098981I
1.90298 5.20040I 11.2108 + 9.9662I
u = 1.40718 0.19996I
a = 0.726806 + 0.590256I
b = 0.696578 + 0.098981I
1.90298 + 5.20040I 11.2108 9.9662I
27
V. I
u
5
= hb + u 1, a + u 1, u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u + 1
a
7
=
u + 1
u + 1
a
11
=
u
u + 1
a
12
=
0
1
a
6
=
0
u + 1
a
2
=
1
u
a
1
=
0
1
a
5
=
0
u + 1
a
9
=
u + 1
1
a
8
=
u + 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
(u + 1)
2
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
10
, c
11
u
2
+ u + 1
c
5
, c
12
u
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y 1)
2
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
10
, c
11
y
2
+ y + 1
c
5
, c
12
y
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
3.28987 6.00000
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
3.28987 6.00000
31
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u + 1)
2
)(u
6
+ u
5
2u
3
+ u + 1)
2
(u
14
4u
13
+ ··· 2u + 1)
· (u
26
21u
25
+ ··· + 7680u 512)(u
32
+ 7u
31
+ ··· + 12u + 1)
2
c
2
, c
10
(u
2
+ u + 1)(u
12
4u
10
+ 5u
8
3u
6
+ 5u
4
4u
2
+ 1)
· (u
14
4u
12
+ 8u
10
10u
8
u
7
+ 5u
6
+ u
5
+ 2u
4
+ u
3
2u
2
u + 1)
· (u
26
7u
24
+ ··· + 2u 1)(u
64
2u
63
+ ··· 171u + 37)
c
3
, c
6
(u
2
+ u + 1)(u
12
4u
10
+ 5u
8
3u
6
+ 5u
4
4u
2
+ 1)
· (u
14
4u
12
+ 8u
10
10u
8
+ u
7
+ 5u
6
u
5
+ 2u
4
u
3
2u
2
+ u + 1)
· (u
26
7u
24
+ ··· + 2u 1)(u
64
2u
63
+ ··· 171u + 37)
c
4
, c
7
(u
2
+ u + 1)
· (u
12
u
11
+ 2u
10
+ 2u
9
+ 4u
8
u
7
+ 2u
6
u
5
+ 4u
4
+ 2u
3
+ 2u
2
u + 1)
· (u
14
+ u
11
+ 5u
10
u
9
+ u
7
+ 3u
6
6u
5
+ u
4
+ 2u
3
+ 2u
2
3u + 1)
· (u
26
+ 5u
24
+ ··· 8u + 1)(u
64
u
63
+ ··· 4808u 587)
c
5
u
2
(u
6
2u
5
+ ··· 4u + 2)
2
(u
14
+ 4u
13
+ ··· + 8u + 1)
· (u
26
11u
25
+ ··· + 304u 24)(u
32
+ 5u
31
+ ··· 69u 8)
2
c
8
, c
11
(u
2
+ u + 1)(u
12
6u
11
+ ··· 5u + 1)(u
14
+ 2u
13
+ ··· + 27u + 7)
· (u
26
2u
25
+ ··· 80u + 19)(u
64
+ 17u
62
+ ··· 264620u + 37823)
c
9
((u + 1)
2
)(u
6
u
5
+ 2u
3
u + 1)
2
(u
14
+ 14u
13
+ ··· + 2333u + 319)
· (u
26
21u
25
+ ··· 16284u + 1096)
· (u
32
+ 13u
31
+ ··· 1313u 169)
2
c
12
u
2
(u
6
+ 2u
5
+ ··· + 4u + 2)
2
(u
14
4u
13
+ ··· 8u + 1)
· (u
26
11u
25
+ ··· + 304u 24)(u
32
+ 5u
31
+ ··· 69u 8)
2
32
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)
2
· (y
14
+ 3y
11
+ ··· 2y + 1)(y
26
y
25
+ ··· 3932160y + 262144)
· (y
32
9y
31
+ ··· 46y + 1)
2
c
2
, c
3
, c
6
c
10
(y
2
+ y + 1)(y
6
4y
5
+ 5y
4
3y
3
+ 5y
2
4y + 1)
2
· (y
14
8y
13
+ ··· 5y + 1)(y
26
14y
25
+ ··· 24y + 1)
· (y
64
18y
63
+ ··· 85481y + 1369)
c
4
, c
7
(y
2
+ y + 1)(y
12
+ 3y
11
+ ··· + 3y + 1)(y
14
+ 10y
12
+ ··· 5y + 1)
· (y
26
+ 10y
25
+ ··· 36y + 1)(y
64
+ 9y
63
+ ··· + 6985670y + 344569)
c
5
, c
12
y
2
(y
6
+ 4y
5
+ ··· + 4y + 4)
2
(y
14
+ 10y
13
+ ··· + 4y + 1)
· (y
26
+ 17y
25
+ ··· 2656y + 576)(y
32
+ 25y
31
+ ··· 505y + 64)
2
c
8
, c
11
(y
2
+ y + 1)(y
12
4y
10
+ ··· y + 1)(y
14
+ 12y
13
+ ··· y + 49)
· (y
26
+ 22y
25
+ ··· 7236y + 361)
· (y
64
+ 34y
63
+ ··· 493922520582y + 1430579329)
c
9
(y 1)
2
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)
2
· (y
14
+ 10y
13
+ ··· 227877y + 101761)
· (y
26
+ 5y
25
+ ··· 35876688y + 1201216)
· (y
32
15y
31
+ ··· 543335y + 28561)
2
33