12n
0875
(K12n
0875
)
A knot diagram
1
Linearized knot diagam
4 8 10 1 10 11 12 3 6 2 7 6
Solving Sequence
7,11
12
2,8
3 6 1 10 5 4 9
c
11
c
7
c
2
c
6
c
12
c
10
c
5
c
4
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−41u
26
+ 353u
25
+ ··· + 8b + 776, 421u
26
+ 3271u
25
+ ··· + 16a + 5248,
u
27
9u
26
+ ··· + 32u + 16i
I
u
2
= h5.05025 × 10
19
a
7
u
4
+ 2.52836 × 10
19
a
6
u
4
+ ··· 5.62996 × 10
20
a 3.53454 × 10
20
,
a
7
u
4
+ 2a
6
u
4
+ ··· + 2a + 8, u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
3
= h−u
17
+ u
16
+ ··· + b 1, u
17
+ 2u
16
+ ··· + a + 1, u
18
10u
16
+ ··· + 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−41u
26
+ 353u
25
+ · · · + 8b + 776, 421u
26
+ 3271u
25
+ · · · + 16a +
5248, u
27
9u
26
+ · · · + 32u + 16i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
2
=
421
16
u
26
3271
16
u
25
+ ··· 900u 328
41
8
u
26
353
8
u
25
+ ··· 287u 97
a
8
=
u
u
3
+ u
a
3
=
389
16
u
26
2911
16
u
25
+ ··· 639u 246
185
8
u
26
1413
8
u
25
+ ··· 660u 251
a
6
=
u
u
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
10
=
9.50000u
26
+ 71.5000u
25
+ ··· + 263.500u + 100.500
6u
26
+
93
2
u
25
+ ··· +
393
2
u + 72
a
5
=
95
4
u
26
689
4
u
25
+ ···
2027
4
u 204
143
4
u
26
267u
25
+ ··· 951u 364
a
4
=
34u
26
+
997
4
u
25
+ ··· +
3177
4
u + 312
61
4
u
26
+ 114u
25
+ ··· + 409u + 156
a
9
=
2u
26
25
2
u
25
+ ···
1
2
u
7
2
11
2
u
26
75
2
u
25
+ ···
135
2
u 32
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
2
u
26
155
2
u
25
+ ··· 328u 122
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
27
12u
26
+ ··· + 208u 32
c
2
, c
8
, c
10
u
27
u
26
+ ··· u
2
+ 1
c
3
u
27
+ 14u
25
+ ··· + 15u + 6
c
5
, c
9
u
27
+ u
26
+ ··· + 3u + 1
c
6
, c
7
, c
11
u
27
9u
26
+ ··· + 32u + 16
c
12
u
27
+ 27u
26
+ ··· + 69984u + 2544
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
27
+ 12y
26
+ ··· + 2816y 1024
c
2
, c
8
, c
10
y
27
11y
26
+ ··· + 2y 1
c
3
y
27
+ 28y
26
+ ··· 735y 36
c
5
, c
9
y
27
39y
26
+ ··· 23y 1
c
6
, c
7
, c
11
y
27
25y
26
+ ··· 896y 256
c
12
y
27
5y
26
+ ··· + 1414291584y 6471936
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964369
a = 0.318344
b = 0.603064
1.76934 4.68310
u = 0.803711 + 0.683866I
a = 0.491705 + 0.343530I
b = 1.095410 0.539428I
0.57691 5.99392I 1.84311 + 4.05619I
u = 0.803711 0.683866I
a = 0.491705 0.343530I
b = 1.095410 + 0.539428I
0.57691 + 5.99392I 1.84311 4.05619I
u = 0.370454 + 0.864963I
a = 0.583628 0.747382I
b = 1.26577 0.69912I
0.74691 + 11.25370I 0.99031 7.88400I
u = 0.370454 0.864963I
a = 0.583628 + 0.747382I
b = 1.26577 + 0.69912I
0.74691 11.25370I 0.99031 + 7.88400I
u = 0.771780 + 0.532650I
a = 0.558602 0.144325I
b = 0.800896 + 0.600402I
2.49843 + 0.05140I 5.15323 0.12545I
u = 0.771780 0.532650I
a = 0.558602 + 0.144325I
b = 0.800896 0.600402I
2.49843 0.05140I 5.15323 + 0.12545I
u = 0.041989 + 0.912394I
a = 0.651675 0.346284I
b = 0.856463 0.371397I
6.42911 + 1.54622I 1.38870 4.76643I
u = 0.041989 0.912394I
a = 0.651675 + 0.346284I
b = 0.856463 + 0.371397I
6.42911 1.54622I 1.38870 + 4.76643I
u = 0.313750 + 0.820442I
a = 0.691743 + 0.655778I
b = 1.056140 + 0.752548I
0.95670 + 4.64749I 3.11625 4.28962I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.313750 0.820442I
a = 0.691743 0.655778I
b = 1.056140 0.752548I
0.95670 4.64749I 3.11625 + 4.28962I
u = 1.291790 + 0.132006I
a = 0.39275 + 1.80597I
b = 0.236326 + 0.731369I
4.71486 2.66219I 10.24513 + 2.16538I
u = 1.291790 0.132006I
a = 0.39275 1.80597I
b = 0.236326 0.731369I
4.71486 + 2.66219I 10.24513 2.16538I
u = 1.235650 + 0.498505I
a = 0.272822 + 0.119393I
b = 0.892468 0.171957I
2.75085 + 3.44962I 3.04006 0.75559I
u = 1.235650 0.498505I
a = 0.272822 0.119393I
b = 0.892468 + 0.171957I
2.75085 3.44962I 3.04006 + 0.75559I
u = 1.304880 + 0.416381I
a = 0.322702 1.316720I
b = 0.810130 0.511841I
2.23251 6.28195I 4.42614 + 9.81569I
u = 1.304880 0.416381I
a = 0.322702 + 1.316720I
b = 0.810130 + 0.511841I
2.23251 + 6.28195I 4.42614 9.81569I
u = 1.44686 + 0.33023I
a = 0.06455 + 1.78314I
b = 1.14982 + 0.91803I
6.58526 8.82619I 6.63229 + 4.83886I
u = 1.44686 0.33023I
a = 0.06455 1.78314I
b = 1.14982 0.91803I
6.58526 + 8.82619I 6.63229 4.83886I
u = 1.47459 + 0.33777I
a = 0.27730 1.78435I
b = 1.33721 0.86260I
5.1650 15.6109I 4.73031 + 8.36235I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47459 0.33777I
a = 0.27730 + 1.78435I
b = 1.33721 + 0.86260I
5.1650 + 15.6109I 4.73031 8.36235I
u = 1.56344 + 0.10077I
a = 0.666759 + 0.733427I
b = 0.423378 + 0.781537I
10.26540 2.14143I 10.01123 1.60680I
u = 1.56344 0.10077I
a = 0.666759 0.733427I
b = 0.423378 0.781537I
10.26540 + 2.14143I 10.01123 + 1.60680I
u = 0.207167 + 0.338394I
a = 0.807617 + 0.644314I
b = 0.198877 + 0.473880I
0.191214 + 0.917747I 4.07825 7.40992I
u = 0.207167 0.338394I
a = 0.807617 0.644314I
b = 0.198877 0.473880I
0.191214 0.917747I 4.07825 + 7.40992I
u = 1.64512 + 0.10744I
a = 0.732246 0.267743I
b = 0.702805 0.461250I
9.10720 + 3.18920I 2.50344 8.37472I
u = 1.64512 0.10744I
a = 0.732246 + 0.267743I
b = 0.702805 + 0.461250I
9.10720 3.18920I 2.50344 + 8.37472I
7
II. I
u
2
= h5.05 × 10
19
a
7
u
4
+ 2.53 × 10
19
a
6
u
4
+ · · · 5.63 × 10
20
a 3.53 ×
10
20
, a
7
u
4
+ 2a
6
u
4
+ · · · + 2a + 8, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
2
=
a
0.122834a
7
u
4
0.0614957a
6
u
4
+ ··· + 1.36934a + 0.859686
a
8
=
u
u
3
+ u
a
3
=
0.0599628a
7
u
4
0.0892303a
6
u
4
+ ··· + 0.480015a 0.153698
0.0963330a
7
u
4
+ 0.0655129a
6
u
4
+ ··· + 0.468860a + 0.984014
a
6
=
u
u
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
10
=
0.00880396a
7
u
4
+ 0.0745605a
6
u
4
+ ··· 0.0852193a + 1.19688
0.102685a
7
u
4
+ 0.0867561a
6
u
4
+ ··· + 0.183710a + 0.753308
a
5
=
0.0864621a
7
u
4
0.0164718a
6
u
4
+ ··· 0.406676a + 0.181351
0.0228102a
7
u
4
+ 0.150985a
6
u
4
+ ··· + 0.872274a 0.350649
a
4
=
0.0542117a
7
u
4
0.181136a
6
u
4
+ ··· + 2.21194a + 1.16802
0.0222538a
7
u
4
+ 0.109064a
6
u
4
+ ··· + 1.48393a + 0.181306
a
9
=
0.0452252a
7
u
4
0.158091a
6
u
4
+ ··· + 0.0512540a + 2.19986
0.0662635a
7
u
4
0.145896a
6
u
4
+ ··· + 0.320183a + 1.75629
(ii) Obstruction class = 1
(iii) Cusp Shapes =
161487074628025476936
411143306059987191701
a
7
u
4
+
242282595791648428492
411143306059987191701
a
6
u
4
+ ···
2121485914457092581344
411143306059987191701
a
2877275927809975425030
411143306059987191701
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
+ u
3
+ u
2
+ 1)
10
c
2
, c
8
, c
10
u
40
+ u
39
+ ··· 2070u + 277
c
3
u
40
+ u
39
+ ··· + 19056u + 6533
c
5
, c
9
u
40
+ 3u
39
+ ··· + 2230u + 179
c
6
, c
7
, c
11
(u
5
+ u
4
2u
3
u
2
+ u 1)
8
c
12
(u
5
3u
4
+ 4u
3
u
2
u + 1)
8
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
10
c
2
, c
8
, c
10
y
40
21y
39
+ ··· 2195212y + 76729
c
3
y
40
y
39
+ ··· + 822647562y + 42680089
c
5
, c
9
y
40
13y
39
+ ··· 585968y + 32041
c
6
, c
7
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)
8
c
12
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
8
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.013355 + 0.679058I
b = 1.42762 + 0.04887I
2.74473 1.41510I 0.34560 + 4.90874I
u = 1.21774
a = 0.013355 0.679058I
b = 1.42762 0.04887I
2.74473 + 1.41510I 0.34560 4.90874I
u = 1.21774
a = 1.156090 + 0.786785I
b = 1.73061 + 0.33980I
2.74473 1.41510I 0.34560 + 4.90874I
u = 1.21774
a = 1.156090 0.786785I
b = 1.73061 0.33980I
2.74473 + 1.41510I 0.34560 4.90874I
u = 1.21774
a = 0.02233 + 2.04699I
b = 0.309062 + 0.060548I
4.25702 3.16396I 3.30788 + 2.56480I
u = 1.21774
a = 0.02233 2.04699I
b = 0.309062 0.060548I
4.25702 + 3.16396I 3.30788 2.56480I
u = 1.21774
a = 0.28099 + 2.44297I
b = 0.389484 + 1.129940I
4.25702 3.16396I 3.30788 + 2.56480I
u = 1.21774
a = 0.28099 2.44297I
b = 0.389484 1.129940I
4.25702 + 3.16396I 3.30788 2.56480I
u = 0.309916 + 0.549911I
a = 0.146171 1.055970I
b = 1.055970 0.619228I
4.81671 2.94568I 1.31162 + 9.33939I
u = 0.309916 + 0.549911I
a = 0.346370 1.015430I
b = 1.46492 0.16034I
4.81671 0.11547I 1.311623 0.478094I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 + 0.549911I
a = 0.315118 0.341217I
b = 0.330723 1.174280I
2.18504 4.69454I 2.34185 + 6.99545I
u = 0.309916 + 0.549911I
a = 0.391964 + 0.132667I
b = 0.693402 + 0.981583I
2.18504 + 1.63338I 2.34185 + 1.86585I
u = 0.309916 + 0.549911I
a = 0.46708 + 1.64131I
b = 0.914109 + 0.007273I
4.81671 0.11547I 1.311623 0.478094I
u = 0.309916 + 0.549911I
a = 0.65926 + 1.69213I
b = 1.338800 + 0.122412I
4.81671 2.94568I 1.31162 + 9.33939I
u = 0.309916 + 0.549911I
a = 2.08847 + 0.01907I
b = 0.618894 0.541366I
2.18504 + 1.63338I 2.34185 + 1.86585I
u = 0.309916 + 0.549911I
a = 2.16319 + 0.52446I
b = 0.910444 + 0.561565I
2.18504 4.69454I 2.34185 + 6.99545I
u = 0.309916 0.549911I
a = 0.146171 + 1.055970I
b = 1.055970 + 0.619228I
4.81671 + 2.94568I 1.31162 9.33939I
u = 0.309916 0.549911I
a = 0.346370 + 1.015430I
b = 1.46492 + 0.16034I
4.81671 + 0.11547I 1.311623 + 0.478094I
u = 0.309916 0.549911I
a = 0.315118 + 0.341217I
b = 0.330723 + 1.174280I
2.18504 + 4.69454I 2.34185 6.99545I
u = 0.309916 0.549911I
a = 0.391964 0.132667I
b = 0.693402 0.981583I
2.18504 1.63338I 2.34185 1.86585I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 0.549911I
a = 0.46708 1.64131I
b = 0.914109 0.007273I
4.81671 + 0.11547I 1.311623 + 0.478094I
u = 0.309916 0.549911I
a = 0.65926 1.69213I
b = 1.338800 0.122412I
4.81671 + 2.94568I 1.31162 9.33939I
u = 0.309916 0.549911I
a = 2.08847 0.01907I
b = 0.618894 + 0.541366I
2.18504 1.63338I 2.34185 1.86585I
u = 0.309916 0.549911I
a = 2.16319 0.52446I
b = 0.910444 0.561565I
2.18504 + 4.69454I 2.34185 6.99545I
u = 1.41878 + 0.21917I
a = 0.365290 1.160210I
b = 1.073010 0.613252I
7.72850 + 1.23687I 6.57105 0.93379I
u = 1.41878 + 0.21917I
a = 0.71484 + 1.27508I
b = 0.589674 + 0.279437I
0.72676 + 2.98573I 2.91758 + 1.41016I
u = 1.41878 + 0.21917I
a = 0.25095 + 1.45980I
b = 1.226260 + 0.624039I
7.72850 + 7.56480I 6.57105 6.06338I
u = 1.41878 + 0.21917I
a = 0.93744 + 1.18988I
b = 0.83801 + 1.19485I
7.72850 + 1.23687I 6.57105 0.93379I
u = 1.41878 + 0.21917I
a = 0.91744 1.39733I
b = 1.37802 0.52268I
0.72676 + 2.98573I 2.91758 + 1.41016I
u = 1.41878 + 0.21917I
a = 0.70648 + 1.58918I
b = 1.227650 + 0.310123I
0.72676 + 5.81594I 2.91758 8.40733I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41878 + 0.21917I
a = 0.81391 1.56615I
b = 0.58917 1.45737I
7.72850 + 7.56480I 6.57105 6.06338I
u = 1.41878 + 0.21917I
a = 0.53850 1.75583I
b = 0.799412 1.015300I
0.72676 + 5.81594I 2.91758 8.40733I
u = 1.41878 0.21917I
a = 0.365290 + 1.160210I
b = 1.073010 + 0.613252I
7.72850 1.23687I 6.57105 + 0.93379I
u = 1.41878 0.21917I
a = 0.71484 1.27508I
b = 0.589674 0.279437I
0.72676 2.98573I 2.91758 1.41016I
u = 1.41878 0.21917I
a = 0.25095 1.45980I
b = 1.226260 0.624039I
7.72850 7.56480I 6.57105 + 6.06338I
u = 1.41878 0.21917I
a = 0.93744 1.18988I
b = 0.83801 1.19485I
7.72850 1.23687I 6.57105 + 0.93379I
u = 1.41878 0.21917I
a = 0.91744 + 1.39733I
b = 1.37802 + 0.52268I
0.72676 2.98573I 2.91758 1.41016I
u = 1.41878 0.21917I
a = 0.70648 1.58918I
b = 1.227650 0.310123I
0.72676 5.81594I 2.91758 + 8.40733I
u = 1.41878 0.21917I
a = 0.81391 + 1.56615I
b = 0.58917 + 1.45737I
7.72850 7.56480I 6.57105 + 6.06338I
u = 1.41878 0.21917I
a = 0.53850 + 1.75583I
b = 0.799412 + 1.015300I
0.72676 5.81594I 2.91758 + 8.40733I
14
III.
I
u
3
= h−u
17
+u
16
+· · ·+b1, u
17
+2u
16
+· · ·+a+1, u
18
10u
16
+· · ·+2u+1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
2
=
u
17
2u
16
+ ··· + 2u 1
u
17
u
16
+ ··· 5u
2
+ 1
a
8
=
u
u
3
+ u
a
3
=
u
16
+ 2u
15
+ ··· + u 2
u
17
9u
15
+ ··· 4u
2
+ 1
a
6
=
u
u
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
10
=
u
17
u
16
+ ··· 3u + 4
u
15
8u
13
+ ··· 2u
2
+ 2u
a
5
=
u
17
2u
16
+ ··· + 3u 4
2u
16
+ 17u
14
+ ··· + 2u + 2
a
4
=
2u
16
+ 2u
15
+ ··· + u 2
u
16
+ 9u
14
+ ··· + u + 2
a
9
=
u
17
9u
15
+ ··· 4u + 3
u
16
+ u
15
+ ··· + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
17
+ 9u
16
+ 24u
15
78u
14
71u
13
+ 270u
12
+ 65u
11
443u
10
+ 105u
9
+ 266u
8
278u
7
+ 136u
6
+ 173u
5
194u
4
+ 5u
3
+ 8u
2
4u 1
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
3u
17
+ ··· + 7u
2
+ 1
c
2
, c
10
u
18
u
17
+ ··· u + 1
c
3
u
18
4u
15
+ ··· + 72u + 89
c
4
u
18
+ 3u
17
+ ··· + 7u
2
+ 1
c
5
u
18
+ u
17
+ ··· + 4u
2
+ 1
c
6
, c
7
u
18
10u
16
+ ··· 2u + 1
c
8
u
18
+ u
17
+ ··· + u + 1
c
9
u
18
u
17
+ ··· + 4u
2
+ 1
c
11
u
18
10u
16
+ ··· + 2u + 1
c
12
u
18
2u
16
+ ··· + 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
+ 11y
17
+ ··· + 14y + 1
c
2
, c
8
, c
10
y
18
15y
17
+ ··· + 3y + 1
c
3
y
18
+ 18y
16
+ ··· + 13506y + 7921
c
5
, c
9
y
18
3y
17
+ ··· + 8y + 1
c
6
, c
7
, c
11
y
18
20y
17
+ ··· 12y + 1
c
12
y
18
4y
17
+ ··· 20y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.150560 + 0.836512I
a = 0.533179 0.729886I
b = 1.075140 0.196010I
7.45701 0.86946I 5.92156 + 0.65299I
u = 0.150560 0.836512I
a = 0.533179 + 0.729886I
b = 1.075140 + 0.196010I
7.45701 + 0.86946I 5.92156 0.65299I
u = 1.168950 + 0.333469I
a = 0.464909 + 0.152055I
b = 1.296280 0.148875I
4.40486 3.34214I 1.38697 + 3.55930I
u = 1.168950 0.333469I
a = 0.464909 0.152055I
b = 1.296280 + 0.148875I
4.40486 + 3.34214I 1.38697 3.55930I
u = 1.235970 + 0.060491I
a = 0.03532 + 2.77384I
b = 0.257150 + 0.795688I
5.01572 + 3.63551I 13.7646 8.6540I
u = 1.235970 0.060491I
a = 0.03532 2.77384I
b = 0.257150 0.795688I
5.01572 3.63551I 13.7646 + 8.6540I
u = 1.239720 + 0.079694I
a = 0.573148 + 0.001579I
b = 1.58735 + 0.16330I
2.15137 + 0.50360I 5.12126 + 2.00101I
u = 1.239720 0.079694I
a = 0.573148 0.001579I
b = 1.58735 0.16330I
2.15137 0.50360I 5.12126 2.00101I
u = 1.38028 + 0.40167I
a = 0.176194 1.167390I
b = 0.889583 0.299807I
2.62231 + 5.36601I 0.26863 2.79489I
u = 1.38028 0.40167I
a = 0.176194 + 1.167390I
b = 0.889583 + 0.299807I
2.62231 5.36601I 0.26863 + 2.79489I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.44054 + 0.19476I
a = 0.93259 + 1.49794I
b = 1.105240 + 0.552133I
0.52793 + 4.33231I 1.41553 3.95185I
u = 1.44054 0.19476I
a = 0.93259 1.49794I
b = 1.105240 0.552133I
0.52793 4.33231I 1.41553 + 3.95185I
u = 0.280243 + 0.395808I
a = 0.21841 + 2.05894I
b = 1.315850 + 0.281244I
5.17187 1.97060I 5.62846 + 1.71237I
u = 0.280243 0.395808I
a = 0.21841 2.05894I
b = 1.315850 0.281244I
5.17187 + 1.97060I 5.62846 1.71237I
u = 1.59243 + 0.02692I
a = 0.0586212 + 0.1050240I
b = 0.230133 + 0.440093I
9.22204 + 2.50043I 4.24190 + 1.59514I
u = 1.59243 0.02692I
a = 0.0586212 0.1050240I
b = 0.230133 0.440093I
9.22204 2.50043I 4.24190 1.59514I
u = 0.375129 + 0.106964I
a = 1.29301 2.41807I
b = 0.253290 + 0.629019I
2.10693 3.00421I 1.16234 + 3.79276I
u = 0.375129 0.106964I
a = 1.29301 + 2.41807I
b = 0.253290 0.629019I
2.10693 + 3.00421I 1.16234 3.79276I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
4
+ u
3
+ u
2
+ 1)
10
)(u
18
3u
17
+ ··· + 7u
2
+ 1)
· (u
27
12u
26
+ ··· + 208u 32)
c
2
, c
10
(u
18
u
17
+ ··· u + 1)(u
27
u
26
+ ··· u
2
+ 1)
· (u
40
+ u
39
+ ··· 2070u + 277)
c
3
(u
18
4u
15
+ ··· + 72u + 89)(u
27
+ 14u
25
+ ··· + 15u + 6)
· (u
40
+ u
39
+ ··· + 19056u + 6533)
c
4
((u
4
+ u
3
+ u
2
+ 1)
10
)(u
18
+ 3u
17
+ ··· + 7u
2
+ 1)
· (u
27
12u
26
+ ··· + 208u 32)
c
5
(u
18
+ u
17
+ ··· + 4u
2
+ 1)(u
27
+ u
26
+ ··· + 3u + 1)
· (u
40
+ 3u
39
+ ··· + 2230u + 179)
c
6
, c
7
((u
5
+ u
4
2u
3
u
2
+ u 1)
8
)(u
18
10u
16
+ ··· 2u + 1)
· (u
27
9u
26
+ ··· + 32u + 16)
c
8
(u
18
+ u
17
+ ··· + u + 1)(u
27
u
26
+ ··· u
2
+ 1)
· (u
40
+ u
39
+ ··· 2070u + 277)
c
9
(u
18
u
17
+ ··· + 4u
2
+ 1)(u
27
+ u
26
+ ··· + 3u + 1)
· (u
40
+ 3u
39
+ ··· + 2230u + 179)
c
11
((u
5
+ u
4
2u
3
u
2
+ u 1)
8
)(u
18
10u
16
+ ··· + 2u + 1)
· (u
27
9u
26
+ ··· + 32u + 16)
c
12
((u
5
3u
4
+ 4u
3
u
2
u + 1)
8
)(u
18
2u
16
+ ··· + 2u + 1)
· (u
27
+ 27u
26
+ ··· + 69984u + 2544)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
10
)(y
18
+ 11y
17
+ ··· + 14y + 1)
· (y
27
+ 12y
26
+ ··· + 2816y 1024)
c
2
, c
8
, c
10
(y
18
15y
17
+ ··· + 3y + 1)(y
27
11y
26
+ ··· + 2y 1)
· (y
40
21y
39
+ ··· 2195212y + 76729)
c
3
(y
18
+ 18y
16
+ ··· + 13506y + 7921)(y
27
+ 28y
26
+ ··· 735y 36)
· (y
40
y
39
+ ··· + 822647562y + 42680089)
c
5
, c
9
(y
18
3y
17
+ ··· + 8y + 1)(y
27
39y
26
+ ··· 23y 1)
· (y
40
13y
39
+ ··· 585968y + 32041)
c
6
, c
7
, c
11
((y
5
5y
4
+ 8y
3
3y
2
y 1)
8
)(y
18
20y
17
+ ··· 12y + 1)
· (y
27
25y
26
+ ··· 896y 256)
c
12
((y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
8
)(y
18
4y
17
+ ··· 20y + 1)
· (y
27
5y
26
+ ··· + 1414291584y 6471936)
21