12n
0876
(K12n
0876
)
A knot diagram
1
Linearized knot diagam
4 8 10 1 10 12 11 3 6 2 7 6
Solving Sequence
7,11 2,8
3 12 6 10 4 1 5 9
c
7
c
2
c
11
c
6
c
10
c
3
c
1
c
4
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h5u
19
38u
18
+ ··· + 4b 40, 4u
19
+ 33u
18
+ ··· + 4a + 38, u
20
8u
19
+ ··· 84u + 8i
I
u
2
= h6a
5
u
3
+ 8a
4
u
3
+ ··· + 2a 2, 2a
4
u
3
+ a
3
u
3
+ ··· + 15a + 9, u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
3
= h−u
12
u
11
8u
10
8u
9
23u
8
23u
7
28u
6
27u
5
11u
4
10u
3
+ 2u
2
+ b,
u
10
8u
8
23u
6
28u
4
+ u
3
12u
2
+ a + 2u,
u
14
+ 10u
12
+ 39u
10
+ 74u
8
2u
7
+ 68u
6
9u
5
+ 24u
4
11u
3
2u + 1i
I
u
4
= hu
2
+ b + 2u + 2, u
3
u
2
+ a 3u 2, u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
5
= h−u
3
u
2
+ b 2u 1, 2u
3
+ 2u
2
+ a + 5u + 3, u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
6
= hb + u 1, 2a u + 1, u
2
u + 2i
* 6 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5u
19
38u
18
+ · · · + 4b 40, 4u
19
+ 33u
18
+ · · · + 4a + 38, u
20
8u
19
+ · · · 84u + 8i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
u
19
33
4
u
18
+ ··· +
401
4
u
19
2
5
4
u
19
+
19
2
u
18
+ ···
207
2
u + 10
a
8
=
1
u
2
a
3
=
5
4
u
19
35
4
u
18
+ ··· +
103
4
u
3
2
3
4
u
19
9
2
u
18
+ ··· +
41
2
u 2
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
u
19
+
13
2
u
18
+ ··· 10u +
1
2
1
2
u
18
3u
17
+ ···
67
2
u + 4
a
4
=
7
4
u
19
51
4
u
18
+ ··· +
633
4
u 17
3
4
u
19
+ 6u
18
+ ··· 161u + 18
a
1
=
u
3
2u
u
3
+ u
a
5
=
9
4
u
19
+
69
4
u
18
+ ···
1071
4
u + 27
5
4
u
19
9u
18
+ ··· + 86u 8
a
9
=
1
2
u
19
+ 4u
18
+ ···
147
2
u +
17
2
u
19
+
15
2
u
18
+ ···
159
2
u + 8
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
19
8u
18
+42u
17
163u
16
+506u
15
1312u
14
+2893u
13
5517u
12
+9157u
11
13296u
10
+
16896u
9
18758u
8
+18092u
7
15031u
6
+10601u
5
6223u
4
+2945u
3
1076u
2
+282u 46
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
20
11u
19
+ ··· 44u + 8
c
2
, c
8
, c
10
u
20
3u
19
+ ··· 3u + 1
c
3
u
20
+ u
19
+ ··· + 9u
2
+ 1
c
5
, c
9
u
20
+ 3u
19
+ ··· + 4u + 1
c
6
, c
7
, c
11
c
12
u
20
+ 8u
19
+ ··· + 84u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
+ 9y
19
+ ··· + 48y + 64
c
2
, c
8
, c
10
y
20
15y
19
+ ··· y + 1
c
3
y
20
+ 9y
19
+ ··· + 18y + 1
c
5
, c
9
y
20
19y
19
+ ··· + 6y + 1
c
6
, c
7
, c
11
c
12
y
20
+ 22y
19
+ ··· + 240y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.615618 + 0.809804I
a = 0.149188 1.170140I
b = 0.085977 + 1.072180I
0.57301 3.95011I 2.11978 + 4.63331I
u = 0.615618 0.809804I
a = 0.149188 + 1.170140I
b = 0.085977 1.072180I
0.57301 + 3.95011I 2.11978 4.63331I
u = 0.931383 + 0.280268I
a = 1.201130 0.003287I
b = 0.170316 + 0.290909I
0.03598 + 5.05200I 0.41236 3.99248I
u = 0.931383 0.280268I
a = 1.201130 + 0.003287I
b = 0.170316 0.290909I
0.03598 5.05200I 0.41236 + 3.99248I
u = 0.746449 + 0.775861I
a = 0.471110 + 1.236680I
b = 0.100180 1.158660I
1.47378 10.55160I 0.34887 + 7.91165I
u = 0.746449 0.775861I
a = 0.471110 1.236680I
b = 0.100180 + 1.158660I
1.47378 + 10.55160I 0.34887 7.91165I
u = 0.733781 + 0.211411I
a = 1.008810 0.357032I
b = 0.277449 0.014017I
2.40729 0.59322I 4.18556 0.45547I
u = 0.733781 0.211411I
a = 1.008810 + 0.357032I
b = 0.277449 + 0.014017I
2.40729 + 0.59322I 4.18556 + 0.45547I
u = 0.024618 + 1.249360I
a = 0.348669 + 0.434224I
b = 0.033771 1.123880I
4.75638 1.46611I 2.62808 + 4.96498I
u = 0.024618 1.249360I
a = 0.348669 0.434224I
b = 0.033771 + 1.123880I
4.75638 + 1.46611I 2.62808 4.96498I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.259646 + 1.352180I
a = 0.352486 0.235426I
b = 0.865270 + 0.246592I
2.47957 4.10039I 3.08727 0.58697I
u = 0.259646 1.352180I
a = 0.352486 + 0.235426I
b = 0.865270 0.246592I
2.47957 + 4.10039I 3.08727 + 0.58697I
u = 0.240761 + 0.325217I
a = 0.616636 1.071860I
b = 0.002796 + 0.413272I
0.172616 0.899774I 3.76752 + 7.66615I
u = 0.240761 0.325217I
a = 0.616636 + 1.071860I
b = 0.002796 0.413272I
0.172616 + 0.899774I 3.76752 7.66615I
u = 0.23882 + 1.63854I
a = 0.282035 0.978235I
b = 0.02878 + 3.04561I
9.5379 14.3084I 2.45273 + 7.13980I
u = 0.23882 1.63854I
a = 0.282035 + 0.978235I
b = 0.02878 3.04561I
9.5379 + 14.3084I 2.45273 7.13980I
u = 0.19941 + 1.65855I
a = 0.329642 + 0.850090I
b = 0.11179 2.80281I
7.82775 7.13457I 0.46687 + 4.13636I
u = 0.19941 1.65855I
a = 0.329642 0.850090I
b = 0.11179 + 2.80281I
7.82775 + 7.13457I 0.46687 4.13636I
u = 0.05874 + 1.80462I
a = 0.252521 0.599270I
b = 0.11806 + 2.38692I
16.5920 2.0882I 4.99860 + 4.75350I
u = 0.05874 1.80462I
a = 0.252521 + 0.599270I
b = 0.11806 2.38692I
16.5920 + 2.0882I 4.99860 4.75350I
6
II. I
u
2
=
h6a
5
u
3
+8a
4
u
3
+· · ·+2a2, 2a
4
u
3
+a
3
u
3
+· · ·+15a+9, u
4
+u
3
+3u
2
+2u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
a
3a
5
u
3
4a
4
u
3
+ ··· a + 1
a
8
=
1
u
2
a
3
=
3a
5
u
3
4a
4
u
3
+ ···
5
2
a
2
+ 1
5a
5
u
3
+ 7a
4
u
3
+ ··· a 2
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
a
2
u
4a
5
u
3
+
11
2
a
4
u
3
+ ···
1
2
a
1
2
a
4
=
2a
5
u
3
+
3
2
a
4
u
3
+ ··· +
5
2
a
1
2
3a
5
u
3
+
3
2
a
4
u
3
+ ···
17
2
a
1
2
a
1
=
u
3
2u
u
3
+ u
a
5
=
2a
5
u
3
+ a
4
u
3
+ ··· + 4a 1
a
5
u
3
+
11
2
a
4
u
3
+ ··· 12a
5
2
a
9
=
17
2
a
5
u
3
+
27
2
a
4
u
3
+ ··· 4a 4
21
2
a
5
u
3
17a
4
u
3
+ ··· + 5a +
15
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4a
5
u
3
+ 6a
5
u
2
8a
4
u
3
+ 6a
5
u + 8a
4
u
2
6a
3
u
3
+ 4a
5
+ 8a
4
u + 24a
3
u
2
4u
3
a
2
+
6a
4
+ 20a
3
u + 30a
2
u
2
+ 12a
3
+ 26a
2
u + 20u
2
a + 2u
3
+ 14a
2
+ 14au + 12u
2
+ 6a + 2u
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
4
+ u
3
+ u
2
+ 1)
6
c
2
, c
8
, c
10
u
24
u
23
+ ··· 1188u + 328
c
3
u
24
+ 3u
23
+ ··· 3996u + 648
c
5
, c
9
u
24
+ 5u
23
+ ··· + 168u + 8
c
6
, c
7
, c
11
c
12
(u
4
u
3
+ 3u
2
2u + 1)
6
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
6
c
2
, c
8
, c
10
y
24
15y
23
+ ··· 453584y + 107584
c
3
y
24
3y
23
+ ··· 5750352y + 419904
c
5
, c
9
y
24
7y
23
+ ··· 7776y + 64
c
6
, c
7
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
6
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.103728 1.096500I
b = 1.09009 + 1.02540I
2.06694 1.74886I 1.65348 2.34394I
u = 0.395123 + 0.506844I
a = 0.16699 + 1.52687I
b = 0.83629 1.36113I
2.06694 + 4.57907I 1.65348 7.47354I
u = 0.395123 + 0.506844I
a = 1.78646 + 0.12907I
b = 0.283051 + 0.216704I
2.06694 1.74886I 1.65348 2.34394I
u = 0.395123 + 0.506844I
a = 1.63057 0.79455I
b = 0.357314 0.054366I
2.06694 + 4.57907I 1.65348 7.47354I
u = 0.395123 + 0.506844I
a = 0.39246 1.95028I
b = 0.628050 + 0.462471I
4.93480 + 2.83021I 2.00000 9.81749I
u = 0.395123 + 0.506844I
a = 1.17687 + 1.78486I
b = 0.547258 1.222920I
4.93480 + 2.83021I 2.00000 9.81749I
u = 0.395123 0.506844I
a = 0.103728 + 1.096500I
b = 1.09009 1.02540I
2.06694 + 1.74886I 1.65348 + 2.34394I
u = 0.395123 0.506844I
a = 0.16699 1.52687I
b = 0.83629 + 1.36113I
2.06694 4.57907I 1.65348 + 7.47354I
u = 0.395123 0.506844I
a = 1.78646 0.12907I
b = 0.283051 0.216704I
2.06694 + 1.74886I 1.65348 + 2.34394I
u = 0.395123 0.506844I
a = 1.63057 + 0.79455I
b = 0.357314 + 0.054366I
2.06694 4.57907I 1.65348 + 7.47354I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 0.506844I
a = 0.39246 + 1.95028I
b = 0.628050 0.462471I
4.93480 2.83021I 2.00000 + 9.81749I
u = 0.395123 0.506844I
a = 1.17687 1.78486I
b = 0.547258 + 1.222920I
4.93480 2.83021I 2.00000 + 9.81749I
u = 0.10488 + 1.55249I
a = 0.104373 0.975826I
b = 0.81052 + 3.36343I
11.93650 + 4.57907I 5.65348 7.47354I
u = 0.10488 + 1.55249I
a = 1.045950 0.024912I
b = 1.324300 + 0.197152I
4.93480 + 6.32793I 2.00000 5.12960I
u = 0.10488 + 1.55249I
a = 0.617508 + 0.929773I
b = 0.28030 2.29404I
11.93650 + 4.57907I 5.65348 7.47354I
u = 0.10488 + 1.55249I
a = 0.145302 + 1.200950I
b = 0.31108 3.25723I
11.93650 + 1.74886I 5.65348 + 2.34394I
u = 0.10488 + 1.55249I
a = 0.079320 0.763538I
b = 0.58732 + 3.42729I
4.93480 + 6.32793I 2.00000 5.12960I
u = 0.10488 + 1.55249I
a = 0.225836 0.692087I
b = 1.08202 + 1.93847I
11.93650 + 1.74886I 5.65348 + 2.34394I
u = 0.10488 1.55249I
a = 0.104373 + 0.975826I
b = 0.81052 3.36343I
11.93650 4.57907I 5.65348 + 7.47354I
u = 0.10488 1.55249I
a = 1.045950 + 0.024912I
b = 1.324300 0.197152I
4.93480 6.32793I 2.00000 + 5.12960I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.10488 1.55249I
a = 0.617508 0.929773I
b = 0.28030 + 2.29404I
11.93650 4.57907I 5.65348 + 7.47354I
u = 0.10488 1.55249I
a = 0.145302 1.200950I
b = 0.31108 + 3.25723I
11.93650 1.74886I 5.65348 2.34394I
u = 0.10488 1.55249I
a = 0.079320 + 0.763538I
b = 0.58732 3.42729I
4.93480 6.32793I 2.00000 + 5.12960I
u = 0.10488 1.55249I
a = 0.225836 + 0.692087I
b = 1.08202 1.93847I
11.93650 1.74886I 5.65348 2.34394I
12
III. I
u
3
=
h−u
12
u
11
+· · ·+2u
2
+b, u
10
8u
8
+· · ·+a+2u, u
14
+10u
12
+· · ·2u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
u
10
+ 8u
8
+ 23u
6
+ 28u
4
u
3
+ 12u
2
2u
u
12
+ u
11
+ ··· + 10u
3
2u
2
a
8
=
1
u
2
a
3
=
u
11
+ u
10
+ ··· + 10u
2
2u
u
13
+ u
12
+ ··· + 10u
3
2u
2
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
u
12
9u
10
31u
8
51u
6
+ 2u
5
40u
4
+ 7u
3
12u
2
+ 6u
u
13
+ u
12
+ ··· u + 1
a
4
=
u
11
+ 9u
9
+ 30u
7
+ 45u
5
u
4
+ 29u
3
4u
2
+ 6u 3
u
10
+ 7u
8
+ 17u
6
+ 16u
4
2u
3
+ 4u
2
3u
a
1
=
u
3
2u
u
3
+ u
a
5
=
u
9
+ 7u
7
+ 17u
5
+ 17u
3
u
2
+ 6u 2
u
12
+ u
11
+ ··· + 2u
2
4u
a
9
=
u
13
u
12
+ ··· + 6u + 1
u
12
u
11
+ ··· u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
13
+2u
12
8u
11
+17u
10
24u
9
+51u
8
37u
7
+60u
6
43u
5
+12u
4
41u
3
15u
2
11u+6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
3u
13
+ ··· + 7u
2
+ 1
c
2
, c
10
u
14
u
13
+ ··· u + 1
c
3
u
14
u
12
+ ··· + 22u + 29
c
4
u
14
+ 3u
13
+ ··· + 7u
2
+ 1
c
5
u
14
+ u
13
+ ··· + 4u
2
+ 1
c
6
, c
7
u
14
+ 10u
12
+ ··· 2u + 1
c
8
u
14
+ u
13
+ ··· + u + 1
c
9
u
14
u
13
+ ··· + 4u
2
+ 1
c
11
, c
12
u
14
+ 10u
12
+ ··· + 2u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
+ 11y
13
+ ··· + 14y + 1
c
2
, c
8
, c
10
y
14
11y
13
+ ··· + 5y + 1
c
3
y
14
2y
13
+ ··· + 1082y + 841
c
5
, c
9
y
14
3y
13
+ ··· + 8y + 1
c
6
, c
7
, c
11
c
12
y
14
+ 20y
13
+ ··· 4y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.311609 + 0.942763I
a = 0.291653 + 1.169250I
b = 0.737119 1.186440I
7.09672 + 0.19743I 7.21171 0.40759I
u = 0.311609 0.942763I
a = 0.291653 1.169250I
b = 0.737119 + 1.186440I
7.09672 0.19743I 7.21171 + 0.40759I
u = 0.161029 + 1.344040I
a = 0.433516 + 0.120817I
b = 0.916757 + 0.574654I
2.08475 4.90341I 1.06931 + 6.62394I
u = 0.161029 1.344040I
a = 0.433516 0.120817I
b = 0.916757 0.574654I
2.08475 + 4.90341I 1.06931 6.62394I
u = 0.23888 + 1.43943I
a = 0.435879 + 0.255328I
b = 0.231007 1.380650I
3.18169 + 0.60898I 3.58539 1.80775I
u = 0.23888 1.43943I
a = 0.435879 0.255328I
b = 0.231007 + 1.380650I
3.18169 0.60898I 3.58539 + 1.80775I
u = 0.293216 + 0.377036I
a = 1.27142 2.57328I
b = 0.845482 + 0.700844I
5.21647 + 1.94152I 5.99803 0.90958I
u = 0.293216 0.377036I
a = 1.27142 + 2.57328I
b = 0.845482 0.700844I
5.21647 1.94152I 5.99803 + 0.90958I
u = 0.09214 + 1.54037I
a = 0.305542 + 0.999070I
b = 0.50480 2.83803I
11.88620 + 3.33387I 5.15657 1.10675I
u = 0.09214 1.54037I
a = 0.305542 0.999070I
b = 0.50480 + 2.83803I
11.88620 3.33387I 5.15657 + 1.10675I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.376292 + 0.105089I
a = 1.06759 + 1.35883I
b = 0.290833 + 0.885340I
2.11738 + 2.98340I 1.73215 4.07562I
u = 0.376292 0.105089I
a = 1.06759 1.35883I
b = 0.290833 0.885340I
2.11738 2.98340I 1.73215 + 4.07562I
u = 0.07924 + 1.76897I
a = 0.220085 0.669149I
b = 0.29136 + 2.47039I
17.0648 + 1.9156I 10.52053 + 0.88434I
u = 0.07924 1.76897I
a = 0.220085 + 0.669149I
b = 0.29136 2.47039I
17.0648 1.9156I 10.52053 0.88434I
17
IV. I
u
4
= hu
2
+ b + 2u + 2, u
3
u
2
+ a 3u 2, u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
u
3
+ u
2
+ 3u + 2
u
2
2u 2
a
8
=
1
u
2
a
3
=
u
3
+ 2u
1
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
u
3
+ u
2
+ 3u + 2
u
2
u 2
a
4
=
u
3
2u
2
3u 4
u
2
+ 2
a
1
=
u
3
2u
u
3
+ u
a
5
=
u
3
2u
2
3u 3
2u
2
+ u + 2
a
9
=
u
3
+ 3u + 1
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
+ u
3
+ u
2
+ 1
c
2
, c
8
u
4
2u
3
+ u
2
3u + 4
c
3
u
4
3u
3
+ u
2
+ 2u + 1
c
5
, c
9
(u 1)
4
c
6
, c
7
, c
11
c
12
u
4
u
3
+ 3u
2
2u + 1
c
10
(u + 1)
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
2
, c
8
y
4
2y
3
3y
2
y + 16
c
3
y
4
7y
3
+ 15y
2
2y + 1
c
5
, c
9
, c
10
(y 1)
4
c
6
, c
7
, c
11
c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.95668 + 1.22719I
b = 1.108990 0.613156I
4.93480 2.00000
u = 0.395123 0.506844I
a = 0.95668 1.22719I
b = 1.108990 + 0.613156I
4.93480 2.00000
u = 0.10488 + 1.55249I
a = 0.043315 + 0.641200I
b = 0.60898 2.77934I
4.93480 2.00000
u = 0.10488 1.55249I
a = 0.043315 0.641200I
b = 0.60898 + 2.77934I
4.93480 2.00000
21
V.
I
u
5
= h−u
3
u
2
+ b 2u 1, 2u
3
+ 2u
2
+ a + 5u + 3, u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
2u
3
2u
2
5u 3
u
3
+ u
2
+ 2u + 1
a
8
=
1
u
2
a
3
=
2u
3
2u
2
5u 2
u
3
+ 2u
2
+ 2u + 1
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
10
=
3u
3
+ 2u
2
+ 7u + 4
u
3
u 1
a
4
=
u
3
3u + 1
u
a
1
=
u
3
2u
u
3
+ u
a
5
=
u
3
3u + 2
u
2
+ 2u
a
9
=
2u
3
+ 2u
2
+ 5u + 3
u
3
u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
+ u
3
+ u
2
+ 1
c
2
, c
8
(u + 1)
4
c
3
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
5
, c
9
u
4
+ 2u
3
+ 3u
2
+ 3u + 2
c
6
, c
7
, c
11
c
12
u
4
u
3
+ 3u
2
2u + 1
c
10
u
4
2u
3
+ u
2
3u + 4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
2
, c
8
(y 1)
4
c
3
, c
6
, c
7
c
11
, c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
5
, c
9
y
4
+ 2y
3
+ y
2
+ 3y + 4
c
10
y
4
2y
3
3y
2
y + 16
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 1.30849 1.94753I
b = 0.351808 + 0.720342I
4.93480 2.00000
u = 0.395123 0.506844I
a = 1.30849 + 1.94753I
b = 0.351808 0.720342I
4.93480 2.00000
u = 0.10488 + 1.55249I
a = 0.808493 + 0.270093I
b = 0.851808 0.911292I
4.93480 2.00000
u = 0.10488 1.55249I
a = 0.808493 0.270093I
b = 0.851808 + 0.911292I
4.93480 2.00000
25
VI. I
u
6
= hb + u 1, 2a u + 1, u
2
u + 2i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
2
=
1
2
u
1
2
u + 1
a
8
=
1
u 2
a
3
=
1
2
u +
1
2
1
a
12
=
u
u
a
6
=
u 1
u + 2
a
10
=
1
2
u
1
2
1
a
4
=
1
2
u +
3
2
u 1
a
1
=
u + 2
2
a
5
=
3
2
u +
3
2
u 3
a
9
=
1
2
u +
1
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
2
u + 2
c
2
, c
8
, c
10
(u + 1)
2
c
5
, c
9
(u 1)
2
c
6
, c
7
, c
11
c
12
u
2
+ u + 2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
11
c
12
y
2
+ 3y + 4
c
2
, c
5
, c
8
c
9
, c
10
(y 1)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.32288I
a = 0.250000 + 0.661438I
b = 0.50000 1.32288I
4.93480 2.00000
u = 0.50000 1.32288I
a = 0.250000 0.661438I
b = 0.50000 + 1.32288I
4.93480 2.00000
29
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 2)(u
4
+ u
3
+ u
2
+ 1)
8
(u
14
3u
13
+ ··· + 7u
2
+ 1)
· (u
20
11u
19
+ ··· 44u + 8)
c
2
, c
10
((u + 1)
6
)(u
4
2u
3
+ u
2
3u + 4)(u
14
u
13
+ ··· u + 1)
· (u
20
3u
19
+ ··· 3u + 1)(u
24
u
23
+ ··· 1188u + 328)
c
3
(u
2
u + 2)(u
4
3u
3
+ u
2
+ 2u + 1)(u
4
+ u
3
+ 3u
2
+ 2u + 1)
· (u
14
u
12
+ ··· + 22u + 29)(u
20
+ u
19
+ ··· + 9u
2
+ 1)
· (u
24
+ 3u
23
+ ··· 3996u + 648)
c
4
(u
2
u + 2)(u
4
+ u
3
+ u
2
+ 1)
8
(u
14
+ 3u
13
+ ··· + 7u
2
+ 1)
· (u
20
11u
19
+ ··· 44u + 8)
c
5
((u 1)
6
)(u
4
+ 2u
3
+ ··· + 3u + 2)(u
14
+ u
13
+ ··· + 4u
2
+ 1)
· (u
20
+ 3u
19
+ ··· + 4u + 1)(u
24
+ 5u
23
+ ··· + 168u + 8)
c
6
, c
7
(u
2
+ u + 2)(u
4
u
3
+ 3u
2
2u + 1)
8
(u
14
+ 10u
12
+ ··· 2u + 1)
· (u
20
+ 8u
19
+ ··· + 84u + 8)
c
8
((u + 1)
6
)(u
4
2u
3
+ u
2
3u + 4)(u
14
+ u
13
+ ··· + u + 1)
· (u
20
3u
19
+ ··· 3u + 1)(u
24
u
23
+ ··· 1188u + 328)
c
9
((u 1)
6
)(u
4
+ 2u
3
+ ··· + 3u + 2)(u
14
u
13
+ ··· + 4u
2
+ 1)
· (u
20
+ 3u
19
+ ··· + 4u + 1)(u
24
+ 5u
23
+ ··· + 168u + 8)
c
11
, c
12
(u
2
+ u + 2)(u
4
u
3
+ 3u
2
2u + 1)
8
(u
14
+ 10u
12
+ ··· + 2u + 1)
· (u
20
+ 8u
19
+ ··· + 84u + 8)
30
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ 3y + 4)(y
4
+ y
3
+ 3y
2
+ 2y + 1)
8
(y
14
+ 11y
13
+ ··· + 14y + 1)
· (y
20
+ 9y
19
+ ··· + 48y + 64)
c
2
, c
8
, c
10
((y 1)
6
)(y
4
2y
3
+ ··· y + 16)(y
14
11y
13
+ ··· + 5y + 1)
· (y
20
15y
19
+ ··· y + 1)(y
24
15y
23
+ ··· 453584y + 107584)
c
3
(y
2
+ 3y + 4)(y
4
7y
3
+ 15y
2
2y + 1)(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
14
2y
13
+ ··· + 1082y + 841)(y
20
+ 9y
19
+ ··· + 18y + 1)
· (y
24
3y
23
+ ··· 5750352y + 419904)
c
5
, c
9
((y 1)
6
)(y
4
+ 2y
3
+ y
2
+ 3y + 4)(y
14
3y
13
+ ··· + 8y + 1)
· (y
20
19y
19
+ ··· + 6y + 1)(y
24
7y
23
+ ··· 7776y + 64)
c
6
, c
7
, c
11
c
12
(y
2
+ 3y + 4)(y
4
+ 5y
3
+ ··· + 2y + 1)
8
(y
14
+ 20y
13
+ ··· 4y + 1)
· (y
20
+ 22y
19
+ ··· + 240y + 64)
31