12n
0881
(K12n
0881
)
A knot diagram
1
Linearized knot diagam
4 12 7 1 8 4 11 5 12 8 3 9
Solving Sequence
3,7 4,11
8 12 2 1 6 5 10 9
c
3
c
7
c
11
c
2
c
1
c
6
c
5
c
10
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, a + 1, u
3
+ u
2
+ 2u 1i
I
u
2
= hb u, 2u
15
+ 4u
14
+ ··· + 2a + 5,
u
16
u
15
+ 6u
14
3u
13
+ 17u
12
5u
11
+ 30u
10
4u
9
+ 33u
8
3u
7
+ 22u
6
4u
5
+ 8u
4
5u
3
+ 3u
2
3u + 1i
I
u
3
= h−2u
15
8u
13
5u
12
20u
11
14u
10
28u
9
24u
8
22u
7
14u
6
u
4
+ 6u
3
+ 2u
2
+ 2b + u 2, a + 1,
u
16
u
15
+ 6u
14
3u
13
+ 17u
12
5u
11
+ 30u
10
4u
9
+ 33u
8
3u
7
+ 22u
6
4u
5
+ 8u
4
5u
3
+ 3u
2
3u + 1i
I
u
4
= h14971u
15
+ 114227u
14
+ ··· + 20848b + 188080, 11755u
15
+ 75853u
14
+ ··· + 41696a 119840,
u
16
+ 9u
15
+ ··· + 64u + 32i
I
u
5
= hb + u, a + 1, u
4
+ u
2
+ 2u + 1i
I
u
6
= hb 2u 1, a + 1, u
2
+ u + 1i
I
u
7
= hb + u, a + u 1, u
2
+ u + 1i
I
u
8
= h2b u 1, 6a + u 3, u
2
+ 3i
I
u
9
= hb + 1, a + 1, u
2
u + 1i
I
u
10
= hb u, a + u 1, u
2
u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hb a, a
2
a + 1, u + 1i
I
u
12
= hu
3
au u
2
+ b + 3u 2, 2u
4
a 2u
3
a + 7u
2
a + u
3
+ a
2
5au + 3a + 3u, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
I
u
13
= hu
8
2u
7
+ 2u
6
4u
5
+ 6u
4
3u
3
+ 4u
2
+ 2b 3u,
2u
9
+ 3u
8
4u
7
+ 10u
6
12u
5
+ 10u
4
17u
3
+ 10u
2
+ 2a 9u + 4,
u
10
2u
9
+ 3u
8
6u
7
+ 8u
6
8u
5
+ 11u
4
8u
3
+ 7u
2
4u + 1i
I
u
14
= hu
9
2u
8
+ 2u
7
4u
6
+ 6u
5
5u
4
+ 6u
3
5u
2
+ 2b + 4u 2,
u
7
+ 2u
6
2u
5
+ 4u
4
6u
3
+ 3u
2
+ 2a 4u + 3,
u
10
2u
9
+ 3u
8
6u
7
+ 8u
6
8u
5
+ 11u
4
8u
3
+ 7u
2
4u + 1i
I
u
15
= hb + u, a + 1, u
3
u
2
+ 2u 1i
I
u
16
= hb + u, 2u
5
+ 5u
3
3u
2
+ a + 3u 2, u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1i
I
u
17
= h−u
5
+ u
4
+ b u, u
4
+ u
3
+ a 1, u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1i
I
u
18
= h2u
5
u
4
+ 5u
3
5u
2
+ b + 4u 2, a + 1, u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1i
I
u
19
= hb u, a + 1, u
4
+ 2u
3
+ 3u
2
+ 2u + 1i
* 19 irreducible components of dim
C
= 0, with total 122 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hb u, a + 1, u
3
+ u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
a
8
=
u
u
2
+ u
a
12
=
u 1
u
a
2
=
u
2
+ u + 1
u
2
a
1
=
u
2
+ 1
2u 1
a
6
=
u
u
2
u + 1
a
5
=
u
2
+ u
u
2
+ u
a
10
=
u
2
1
u + 1
a
9
=
u 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u 9
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u
3
u
2
+ 2u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
3
+ 3y
2
+ 6y 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.69632 + 1.43595I
a = 1.00000
b = 0.69632 + 1.43595I
8.6715 + 17.0103I 4.82206 8.61570I
u = 0.69632 1.43595I
a = 1.00000
b = 0.69632 1.43595I
8.6715 17.0103I 4.82206 + 8.61570I
u = 0.392647
a = 1.00000
b = 0.392647
0.893590 11.3560
6
II. I
u
2
= hb u, 2u
15
+ 4u
14
+ · · · + 2a + 5, u
16
u
15
+ · · · 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
u
15
2u
14
+ ··· + 4u
5
2
u
a
8
=
u
15
+ 2u
14
+ ··· 5u + 2
u
15
2u
14
+ ··· + 5u 1
a
12
=
u
15
2u
14
+ ··· + 3u
5
2
u
a
2
=
u
15
+ 4u
13
+ ···
1
2
u + 2
u
2
a
1
=
2u
15
+
1
2
u
14
+ ···
5
2
u + 3
1
2
u
15
u
14
+ ··· +
7
2
u
3
2
a
6
=
u
u
3
+ u
a
5
=
1
2
u
15
+
5
2
u
14
+ ···
9
2
u + 2
u
15
u
14
+ ··· +
5
2
u
1
2
a
10
=
3
2
u
15
6u
13
+ ··· + u
5
2
1
2
u
15
+ u
14
+ ··· 3u + 2
a
9
=
3
2
u
15
+ 2u
14
+ ··· 5u +
1
2
u
15
1
2
u
14
+ ··· + u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
15
+ 14u
13
+ 8u
12
+ 38u
11
+ 28u
10
+ 64u
9
+ 54u
8
+ 68u
7
+
48u
6
+ 35u
5
+ 12u
4
+ 2u
3
10u
2
5u 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
16
9u
15
+ ··· 64u + 32
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
16
+ u
15
+ ··· + 3u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
16
+ 11y
15
+ ··· 2560y + 1024
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
16
+ 11y
15
+ ··· 3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.155071 + 0.982491I
a = 1.85344 0.16488I
b = 0.155071 + 0.982491I
11.07300 + 2.11324I 4.13579 3.29911I
u = 0.155071 0.982491I
a = 1.85344 + 0.16488I
b = 0.155071 0.982491I
11.07300 2.11324I 4.13579 + 3.29911I
u = 0.263127 + 0.911584I
a = 0.593560 1.154310I
b = 0.263127 + 0.911584I
1.97235 2.75019 + 0.I
u = 0.263127 0.911584I
a = 0.593560 + 1.154310I
b = 0.263127 0.911584I
1.97235 2.75019 + 0.I
u = 0.415478 + 1.074820I
a = 0.325650 1.226660I
b = 0.415478 + 1.074820I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.415478 1.074820I
a = 0.325650 + 1.226660I
b = 0.415478 1.074820I
4.56396 9.62189I 5.35347 + 7.22561I
u = 0.635797 + 0.475943I
a = 0.30659 1.45911I
b = 0.635797 + 0.475943I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.635797 0.475943I
a = 0.30659 + 1.45911I
b = 0.635797 0.475943I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.640425 + 1.031810I
a = 1.163390 + 0.606464I
b = 0.640425 + 1.031810I
11.07300 + 2.11324I 4.13579 3.29911I
u = 0.640425 1.031810I
a = 1.163390 0.606464I
b = 0.640425 1.031810I
11.07300 2.11324I 4.13579 + 3.29911I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.59989 + 1.32302I
a = 0.816913 0.091000I
b = 0.59989 + 1.32302I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.59989 1.32302I
a = 0.816913 + 0.091000I
b = 0.59989 1.32302I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.75412 + 1.29455I
a = 0.993241 + 0.183480I
b = 0.75412 + 1.29455I
4.56396 9.62189I 5.35347 + 7.22561I
u = 0.75412 1.29455I
a = 0.993241 0.183480I
b = 0.75412 1.29455I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.419493 + 0.126250I
a = 0.774408 + 0.831625I
b = 0.419493 + 0.126250I
0.882161 11.61043 + 0.I
u = 0.419493 0.126250I
a = 0.774408 0.831625I
b = 0.419493 0.126250I
0.882161 11.61043 + 0.I
11
III. I
u
3
= h−2u
15
8u
13
+ · · · + 2b 2, a + 1, u
16
u
15
+ · · · 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
15
+ 4u
13
+ ···
1
2
u + 1
a
8
=
u
u
15
2u
14
+ ··· + 5u 1
a
12
=
u
15
4u
13
+ ··· +
1
2
u 2
u
15
+ 4u
13
+ ···
1
2
u + 1
a
2
=
2u
15
+
5
2
u
14
+ ···
11
2
u + 3
3u
15
5
2
u
14
+ ··· + 5u 1
a
1
=
1
2
u
15
+
3
2
u
14
+ ··· 4u +
5
2
2u
15
5
2
u
14
+ ··· + 5u
3
2
a
6
=
u
u
3
+ u
a
5
=
3
2
u
15
+ 2u
14
+ ··· 3u + 1
3
2
u
15
u
14
+ ··· 4u
2
+ 2u
a
10
=
u
2
1
1
2
u
14
5
2
u
12
+ ··· + u
2
+
3
2
u
a
9
=
1
2
u
15
1
2
u
14
+ ··· +
3
2
u 1
u
15
+ u
14
+ ···
3
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
15
+ 14u
13
+ 8u
12
+ 38u
11
+ 28u
10
+ 64u
9
+ 54u
8
+ 68u
7
+
48u
6
+ 35u
5
+ 12u
4
+ 2u
3
10u
2
5u 8
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
u
16
+ u
15
+ ··· + 3u + 1
c
2
, c
5
, c
8
c
11
u
16
9u
15
+ ··· 64u + 32
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
16
+ 11y
15
+ ··· 3y + 1
c
2
, c
5
, c
8
c
11
y
16
+ 11y
15
+ ··· 2560y + 1024
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.155071 + 0.982491I
a = 1.00000
b = 0.44941 1.79542I
11.07300 + 2.11324I 4.13579 3.29911I
u = 0.155071 0.982491I
a = 1.00000
b = 0.44941 + 1.79542I
11.07300 2.11324I 4.13579 + 3.29911I
u = 0.263127 + 0.911584I
a = 1.00000
b = 0.896070 + 0.844811I
1.97235 2.75019 + 0.I
u = 0.263127 0.911584I
a = 1.00000
b = 0.896070 0.844811I
1.97235 2.75019 + 0.I
u = 0.415478 + 1.074820I
a = 1.00000
b = 1.45373 0.15964I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.415478 1.074820I
a = 1.00000
b = 1.45373 + 0.15964I
4.56396 9.62189I 5.35347 + 7.22561I
u = 0.635797 + 0.475943I
a = 1.00000
b = 0.889379 0.781779I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.635797 0.475943I
a = 1.00000
b = 0.889379 + 0.781779I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.640425 + 1.031810I
a = 1.00000
b = 0.11931 + 1.58879I
11.07300 + 2.11324I 4.13579 3.29911I
u = 0.640425 1.031810I
a = 1.00000
b = 0.11931 1.58879I
11.07300 2.11324I 4.13579 + 3.29911I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.59989 + 1.32302I
a = 1.00000
b = 0.610454 1.026200I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.59989 1.32302I
a = 1.00000
b = 0.610454 + 1.026200I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.75412 + 1.29455I
a = 1.00000
b = 0.51150 1.42416I
4.56396 9.62189I 5.35347 + 7.22561I
u = 0.75412 1.29455I
a = 1.00000
b = 0.51150 + 1.42416I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.419493 + 0.126250I
a = 1.00000
b = 0.429851 0.251093I
0.882161 11.61043 + 0.I
u = 0.419493 0.126250I
a = 1.00000
b = 0.429851 + 0.251093I
0.882161 11.61043 + 0.I
16
IV. I
u
4
= h14971u
15
+ 114227u
14
+ · · · + 20848b + 188080, 11755u
15
+
75853u
14
+ · · · + 41696a 119840, u
16
+ 9u
15
+ · · · + 64u + 32i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
0.281922u
15
1.81919u
14
+ ··· 4.33596u + 2.87414
0.718102u
15
5.47904u
14
+ ··· 20.9171u 9.02149
a
8
=
0.706255u
15
+ 5.65340u
14
+ ··· + 24.6506u + 9.22947
0.702897u
15
+ 6.15119u
14
+ ··· + 36.9708u + 22.6002
a
12
=
0.436181u
15
+ 3.65985u
14
+ ··· + 16.5812u + 11.8956
0.718102u
15
5.47904u
14
+ ··· 20.9171u 9.02149
a
2
=
0.00335764u
15
+ 0.497794u
14
+ ··· + 11.3202u + 14.3707
0.702897u
15
6.15119u
14
+ ··· 35.9708u 22.6002
a
1
=
0.0881619u
15
+ 0.918649u
14
+ ··· + 9.03473u + 8.66692
0.149367u
15
1.50173u
14
+ ··· 13.1190u 9.70990
a
6
=
u
u
3
+ u
a
5
=
0.321901u
15
3.03118u
14
+ ··· 19.7034u 16.2621
0.268755u
15
2.46590u
14
+ ··· 14.9006u 13.2295
a
10
=
0.141045u
15
+ 1.82840u
14
+ ··· + 17.8037u + 16.0787
0.424885u
15
+ 4.19350u
14
+ ··· + 29.8853u + 27.4927
a
9
=
0.333245u
15
+ 3.21899u
14
+ ··· + 19.1554u + 15.4597
0.333941u
15
+ 3.80516u
14
+ ··· + 33.7444u + 30.7329
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16065
5212
u
15
133039
5212
u
14
+ ···
159664
1303
u
98654
1303
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
u
16
+ u
15
+ ··· + 3u + 1
c
3
, c
6
, c
9
c
12
u
16
9u
15
+ ··· 64u + 32
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
16
+ 11y
15
+ ··· 3y + 1
c
3
, c
6
, c
9
c
12
y
16
+ 11y
15
+ ··· 2560y + 1024
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.889379 + 0.781779I
a = 0.137916 0.656371I
b = 0.635797 0.475943I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.889379 0.781779I
a = 0.137916 + 0.656371I
b = 0.635797 + 0.475943I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.610454 + 1.026200I
a = 1.209120 0.134690I
b = 0.59989 1.32302I
2.73466 + 5.62392I 7.83043 1.63381I
u = 0.610454 1.026200I
a = 1.209120 + 0.134690I
b = 0.59989 + 1.32302I
2.73466 5.62392I 7.83043 + 1.63381I
u = 0.896070 + 0.844811I
a = 0.352314 + 0.685153I
b = 0.263127 + 0.911584I
1.97235 2.75019 + 0.I
u = 0.896070 0.844811I
a = 0.352314 0.685153I
b = 0.263127 0.911584I
1.97235 2.75019 + 0.I
u = 1.45373 + 0.15964I
a = 0.202173 0.761549I
b = 0.415478 1.074820I
4.56396 9.62189I 5.35347 + 7.22561I
u = 1.45373 0.15964I
a = 0.202173 + 0.761549I
b = 0.415478 + 1.074820I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.429851 + 0.251093I
a = 0.599708 + 0.644017I
b = 0.419493 0.126250I
0.882161 11.61043 + 0.I
u = 0.429851 0.251093I
a = 0.599708 0.644017I
b = 0.419493 + 0.126250I
0.882161 11.61043 + 0.I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.51150 + 1.42416I
a = 0.973582 + 0.179848I
b = 0.75412 1.29455I
4.56396 + 9.62189I 5.35347 7.22561I
u = 0.51150 1.42416I
a = 0.973582 0.179848I
b = 0.75412 + 1.29455I
4.56396 9.62189I 5.35347 + 7.22561I
u = 0.11931 + 1.58879I
a = 0.675889 0.352334I
b = 0.640425 + 1.031810I
11.07300 + 2.11324I 4.13579 3.29911I
u = 0.11931 1.58879I
a = 0.675889 + 0.352334I
b = 0.640425 1.031810I
11.07300 2.11324I 4.13579 + 3.29911I
u = 0.44941 + 1.79542I
a = 0.535301 0.047620I
b = 0.155071 0.982491I
11.07300 2.11324I 4.13579 + 3.29911I
u = 0.44941 1.79542I
a = 0.535301 + 0.047620I
b = 0.155071 + 0.982491I
11.07300 + 2.11324I 4.13579 3.29911I
21
V. I
u
5
= hb + u, a + 1, u
4
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
a
8
=
u
u
2
+ u
a
12
=
u 1
u
a
2
=
u
2
u + 1
u
2
a
1
=
u
3
+ u + 2
u
3
u
2
+ u + 1
a
6
=
u
u
3
+ u
a
5
=
u
3
u
2
+ 2u + 1
u
3
+ u
2
u 2
a
10
=
u
2
1
u
3
+ u
2
u
a
9
=
2u
3
+ u
2
3u 3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
+ 6u
2
6u 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
, c
11
u
4
+ u
2
+ 2u + 1
c
2
, c
4
, c
6
c
8
, c
10
, c
12
u
4
+ u
2
2u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
4
+ 2y
3
+ 3y
2
2y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.624811 + 0.300243I
a = 1.00000
b = 0.624811 0.300243I
3.28987 + 7.32772I 6.00000 6.00000I
u = 0.624811 0.300243I
a = 1.00000
b = 0.624811 + 0.300243I
3.28987 7.32772I 6.00000 + 6.00000I
u = 0.62481 + 1.30024I
a = 1.00000
b = 0.62481 1.30024I
3.28987 7.32772I 6.00000 + 6.00000I
u = 0.62481 1.30024I
a = 1.00000
b = 0.62481 + 1.30024I
3.28987 + 7.32772I 6.00000 6.00000I
25
VI. I
u
6
= hb 2u 1, a + 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u 1
a
11
=
1
2u + 1
a
8
=
u
2
a
12
=
2u 2
2u + 1
a
2
=
2u 1
3
a
1
=
u 1
2
a
6
=
u
u + 1
a
5
=
2u + 2
3u 1
a
10
=
u
1
a
9
=
u 2
u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 13
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
2
+ u + 1
c
2
, c
5
, c
8
c
11
u
2
+ 3
c
4
, c
6
, c
10
c
12
u
2
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
2
+ y + 1
c
2
, c
5
, c
8
c
11
(y + 3)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 1.73205I
9.86960 + 4.05977I 9.00000 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 1.73205I
9.86960 4.05977I 9.00000 + 6.92820I
29
VII. I
u
7
= hb + u, a + u 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u 1
a
11
=
u + 1
u
a
8
=
3u 3
2
a
12
=
1
u
a
2
=
u + 1
u + 1
a
1
=
3u + 2
2
a
6
=
u
u + 1
a
5
=
u 3
3u + 1
a
10
=
2u 2
3u + 2
a
9
=
u 2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 13
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
2
+ 3
c
2
, c
6
, c
8
c
12
u
2
u + 1
c
3
, c
5
, c
9
c
11
u
2
+ u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y + 3)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
2
+ y + 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.50000 0.86603I
b = 0.500000 0.866025I
9.86960 + 4.05977I 9.00000 6.92820I
u = 0.500000 0.866025I
a = 1.50000 + 0.86603I
b = 0.500000 + 0.866025I
9.86960 4.05977I 9.00000 + 6.92820I
33
VIII. I
u
8
= h2b u 1, 6a + u 3, u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
3
a
11
=
1
6
u +
1
2
1
2
u +
1
2
a
8
=
1
6
u
1
2
1
2
u +
1
2
a
12
=
2
3
u
1
2
u +
1
2
a
2
=
1
3
u
1
2
u +
1
2
a
1
=
5
6
u +
1
2
2u 1
a
6
=
u
2u
a
5
=
2
3
u
3
2
u
1
2
a
10
=
1
6
u +
1
2
1
a
9
=
1
6
u
3
2
1
2
u +
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 9
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
11
u
2
+ u + 1
c
2
, c
4
, c
8
c
10
u
2
u + 1
c
3
, c
6
, c
9
c
12
u
2
+ 3
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
2
+ y + 1
c
3
, c
6
, c
9
c
12
(y + 3)
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 0.500000 0.288675I
b = 0.500000 + 0.866025I
9.86960 4.05977I 9.00000 + 6.92820I
u = 1.73205I
a = 0.500000 + 0.288675I
b = 0.500000 0.866025I
9.86960 + 4.05977I 9.00000 6.92820I
37
IX. I
u
9
= hb + 1, a + 1, u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u 1
a
11
=
1
1
a
8
=
u
0
a
12
=
0
1
a
2
=
1
1
a
1
=
u + 1
0
a
6
=
u
u 1
a
5
=
0
u 1
a
10
=
u
1
a
9
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 13
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
u
2
+ u + 1
c
2
, c
5
, c
8
c
11
(u 1)
2
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
2
+ y + 1
c
2
, c
5
, c
8
c
11
(y 1)
2
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 1.00000
4.05977I 9.00000 + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 1.00000
4.05977I 9.00000 6.92820I
41
X. I
u
10
= hb u, a + u 1, u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u 1
a
11
=
u + 1
u
a
8
=
u 1
0
a
12
=
2u + 1
u
a
2
=
u 1
u + 1
a
1
=
u
0
a
6
=
u
u 1
a
5
=
u + 1
u 1
a
10
=
2u + 2
u
a
9
=
u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 13
42
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
2
+ u + 1
43
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
2
+ y + 1
44
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
4.05977I 9.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
4.05977I 9.00000 6.92820I
45
XI. I
u
11
= hb a, a
2
a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
4
=
1
1
a
11
=
a
a
a
8
=
a 1
a 2
a
12
=
0
a
a
2
=
1
a + 1
a
1
=
a + 1
2a + 1
a
6
=
1
2
a
5
=
0
a 1
a
10
=
a 1
1
a
9
=
a 1
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a 13
46
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
u
2
+ u + 1
c
3
, c
6
, c
9
c
12
(u 1)
2
47
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
2
+ y + 1
c
3
, c
6
, c
9
c
12
(y 1)
2
48
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
4.05977I 9.00000 + 6.92820I
u = 1.00000
a = 0.500000 0.866025I
b = 0.500000 0.866025I
4.05977I 9.00000 6.92820I
49
XII. I
u
12
=
hu
3
auu
2
+b+3u2, 2u
4
a2u
3
a+· · ·+a
2
+3a, u
5
u
4
+4u
3
3u
2
+3u1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
a
u
3
+ au + u
2
3u + 2
a
8
=
u
3
a + u
4
+ u
2
a 3au + 3u
2
+ 2a
u
4
u
3
+ 3u
2
2u + 1
a
12
=
u
3
au u
2
+ a + 3u 2
u
3
+ au + u
2
3u + 2
a
2
=
u
4
a + u
3
a + 2u
4
3u
2
a 2u
3
+ 2au + 7u
2
5u + 3
u
4
a u
3
a u
4
+ 3u
2
a + 2u
3
2au 4u
2
+ 5u 2
a
1
=
u
4
a + u
3
a + 2u
4
3u
2
a u
3
+ au + 6u
2
2u + 1
u
4
a 2u
3
a u
4
+ 3u
2
a + u
3
2au 3u
2
+ 2u 1
a
6
=
u
u
3
+ u
a
5
=
u
4
a + 2u
3
a 4u
2
a 2u
3
+ 5au + u
2
2a 5u + 2
u
3
a + u
2
a + u
3
2au + a + u
a
10
=
u
4
a 2u
3
a + 4u
2
a + 2u
3
5au u
2
+ 3a + 6u 2
u
3
a u
2
a u
3
+ 3au + u
2
a 3u + 2
a
9
=
u
4
a 2u
3
a u
4
+ 5u
2
a + 3u
3
6au 4u
2
+ 3a + 8u 2
u
3
a + u
4
2u
2
a 2u
3
+ 3au + 4u
2
a 5u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
3
16u
2
+ 12u 14
50
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
u
10
+ 2u
9
+ 3u
8
+ 6u
7
+ 8u
6
+ 8u
5
+ 11u
4
+ 8u
3
+ 7u
2
+ 4u + 1
c
3
, c
6
, c
9
c
12
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
2
51
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
10
+ 2y
9
+ y
8
+ 2y
7
+ 16y
6
+ 44y
5
+ 63y
4
+ 42y
3
+ 7y
2
2y + 1
c
3
, c
6
, c
9
c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
52
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 1.310210 + 0.036071I
b = 1.38058 0.52471I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.233677 + 0.885557I
a = 0.16935 + 1.60369I
b = 0.274223 1.168700I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.233677 0.885557I
a = 1.310210 0.036071I
b = 1.38058 + 0.52471I
1.81981 + 2.21397I 3.11432 4.22289I
u = 0.233677 0.885557I
a = 0.16935 1.60369I
b = 0.274223 + 1.168700I
1.81981 + 2.21397I 3.11432 4.22289I
u = 0.416284
a = 1.023710 + 0.522511I
b = 0.426151 + 0.217513I
0.882183 11.6090
u = 0.416284
a = 1.023710 0.522511I
b = 0.426151 0.217513I
0.882183 11.6090
u = 0.05818 + 1.69128I
a = 0.612800 0.376865I
b = 0.140527 + 0.958055I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.05818 + 1.69128I
a = 0.568653 + 0.063527I
b = 0.673038 1.014490I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.05818 1.69128I
a = 0.612800 + 0.376865I
b = 0.140527 0.958055I
10.95830 + 3.33174I 2.08126 2.36228I
u = 0.05818 1.69128I
a = 0.568653 0.063527I
b = 0.673038 + 1.014490I
10.95830 + 3.33174I 2.08126 2.36228I
53
XIII.
I
u
13
= hu
8
2u
7
+· · ·+2b3u, 2u
9
+3u
8
+· · ·+2a+4, u
10
2u
9
+· · ·4u+1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
u
9
3
2
u
8
+ ··· +
9
2
u 2
1
2
u
8
+ u
7
+ ··· 2u
2
+
3
2
u
a
8
=
1
2
u
8
1
2
u
7
+ ··· +
1
2
u
1
2
1
2
u
9
u
8
+ ··· +
1
2
u +
1
2
a
12
=
u
9
u
8
+ u
7
4u
6
+ 4u
5
2u
4
+ 7u
3
3u
2
+ 3u 2
1
2
u
8
+ u
7
+ ··· 2u
2
+
3
2
u
a
2
=
u
9
+
5
2
u
8
+ ···
13
2
u + 3
1
2
u
9
u
8
+ ··· + 2u
1
2
a
1
=
u
9
+
5
2
u
8
+ ···
15
2
u + 3
1
2
u
9
u
8
+ ··· + 2u
1
2
a
6
=
u
u
3
+ u
a
5
=
1
2
u
9
+
1
2
u
8
+ ··· +
1
2
u
2
+ u
1
2
u
8
1
2
u
7
+ ···
3
2
u +
1
2
a
10
=
u
9
3
2
u
8
+ ··· + 6u
5
2
1
2
u
9
+ u
8
+ ···
3
2
u + 1
a
9
=
3
2
u
9
3u
8
+ ··· + 5u
3
2
u
9
+ 2u
8
+ ··· u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
9
6u
8
+ 8u
7
14u
6
+ 22u
5
22u
4
+ 24u
3
24u
2
+ 12u 14
54
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
u
10
+ 2u
9
+ 3u
8
+ 6u
7
+ 8u
6
+ 8u
5
+ 11u
4
+ 8u
3
+ 7u
2
+ 4u + 1
c
2
, c
5
, c
8
c
11
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
2
55
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
10
+ 2y
9
+ y
8
+ 2y
7
+ 16y
6
+ 44y
5
+ 63y
4
+ 42y
3
+ 7y
2
2y + 1
c
2
, c
5
, c
8
c
11
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
56
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 0.140527 + 0.958055I
a = 1.137480 0.535660I
b = 0.05818 + 1.69128I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.140527 0.958055I
a = 1.137480 + 0.535660I
b = 0.05818 1.69128I
10.95830 + 3.33174I 2.08126 2.36228I
u = 0.274223 + 1.168700I
a = 0.162827 + 1.219510I
b = 0.233677 0.885557I
1.81981 + 2.21397I 3.11432 4.22289I
u = 0.274223 1.168700I
a = 0.162827 1.219510I
b = 0.233677 + 0.885557I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.673038 + 1.014490I
a = 0.719565 0.338858I
b = 0.05818 1.69128I
10.95830 + 3.33174I 2.08126 2.36228I
u = 0.673038 1.014490I
a = 0.719565 + 0.338858I
b = 0.05818 + 1.69128I
10.95830 3.33174I 2.08126 + 2.36228I
u = 1.38058 + 0.52471I
a = 0.107568 0.805640I
b = 0.233677 0.885557I
1.81981 + 2.21397I 3.11432 4.22289I
u = 1.38058 0.52471I
a = 0.107568 + 0.805640I
b = 0.233677 + 0.885557I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.426151 + 0.217513I
a = 0.586646 + 0.809843I
b = 0.416284
0.882183 11.60884 + 0.I
u = 0.426151 0.217513I
a = 0.586646 0.809843I
b = 0.416284
0.882183 11.60884 + 0.I
57
XIV.
I
u
14
= hu
9
2u
8
+· · ·+2b 2, u
7
+2u
6
+· · ·+2a + 3, u
10
2u
9
+· · ·4u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
2
u
7
u
6
+ u
5
2u
4
+ 3u
3
3
2
u
2
+ 2u
3
2
1
2
u
9
+ u
8
+ ··· 2u + 1
a
8
=
1
2
u
9
1
2
u
8
+ ··· +
1
2
u
2
u
1
2
u
9
u
8
+ ··· +
1
2
u +
1
2
a
12
=
1
2
u
9
u
8
+ ··· + 4u
5
2
1
2
u
9
+ u
8
+ ··· 2u + 1
a
2
=
u
9
+ 2u
8
+ ··· 4u +
5
2
1
2
u
9
1
2
u
8
+ ··· +
1
2
u
2
1
2
u
a
1
=
u
9
+
5
2
u
8
+ ···
11
2
u +
5
2
1
2
u
9
u
8
+ ··· +
3
2
u
1
2
a
6
=
u
u
3
+ u
a
5
=
1
2
u
9
+ u
8
+ ··· u +
1
2
1
2
u
8
u
7
+ ···
3
2
u +
1
2
a
10
=
3
2
u
9
3u
8
+ ··· +
9
2
u 2
1
2
u
9
+
1
2
u
8
+ ··· +
1
2
u +
1
2
a
9
=
1
2
u
9
u
8
+ ··· +
1
2
u
1
2
1
2
u
7
+ u
6
u
5
+ u
4
u
3
+
1
2
u
2
+
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
9
6u
8
+ 8u
7
14u
6
+ 22u
5
22u
4
+ 24u
3
24u
2
+ 12u 14
58
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
10
+ 2u
9
+ 3u
8
+ 6u
7
+ 8u
6
+ 8u
5
+ 11u
4
+ 8u
3
+ 7u
2
+ 4u + 1
59
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
10
+ 2y
9
+ y
8
+ 2y
7
+ 16y
6
+ 44y
5
+ 63y
4
+ 42y
3
+ 7y
2
2y + 1
60
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
14
1(vol +
1CS) Cusp shape
u = 0.140527 + 0.958055I
a = 1.73686 0.19403I
b = 0.673038 1.014490I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.140527 0.958055I
a = 1.73686 + 0.19403I
b = 0.673038 + 1.014490I
10.95830 + 3.33174I 2.08126 2.36228I
u = 0.274223 + 1.168700I
a = 0.762658 + 0.020997I
b = 1.38058 + 0.52471I
1.81981 + 2.21397I 3.11432 4.22289I
u = 0.274223 1.168700I
a = 0.762658 0.020997I
b = 1.38058 0.52471I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.673038 + 1.014490I
a = 1.184040 0.728171I
b = 0.140527 0.958055I
10.95830 + 3.33174I 2.08126 2.36228I
u = 0.673038 1.014490I
a = 1.184040 + 0.728171I
b = 0.140527 + 0.958055I
10.95830 3.33174I 2.08126 + 2.36228I
u = 1.38058 + 0.52471I
a = 0.065122 + 0.616687I
b = 0.274223 + 1.168700I
1.81981 + 2.21397I 3.11432 4.22289I
u = 1.38058 0.52471I
a = 0.065122 0.616687I
b = 0.274223 1.168700I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.426151 + 0.217513I
a = 0.774953 + 0.395545I
b = 0.426151 0.217513I
0.882183 11.60884 + 0.I
u = 0.426151 0.217513I
a = 0.774953 0.395545I
b = 0.426151 + 0.217513I
0.882183 11.60884 + 0.I
61
XV. I
u
15
= hb + u, a + 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
a
8
=
u
u
2
+ u
a
12
=
u 1
u
a
2
=
u
2
u + 1
u
2
a
1
=
u
2
2u + 1
2u
2
+ 2u 1
a
6
=
u
u
2
u + 1
a
5
=
u
2
+ u
u
2
3u + 2
a
10
=
u
2
1
u 1
a
9
=
2u
2
+ u 1
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
2
+ 6u 21
62
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
, c
11
u
3
u
2
+ 2u 1
c
2
, c
4
, c
6
c
8
, c
10
, c
12
u
3
+ u
2
+ 2u + 1
63
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
64
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
15
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.00000
b = 0.215080 1.307140I
14.0789 1.8854I 0.238787 + 1.095494I
u = 0.215080 1.307140I
a = 1.00000
b = 0.215080 + 1.307140I
14.0789 + 1.8854I 0.238787 1.095494I
u = 0.569840
a = 1.00000
b = 0.569840
1.83893 21.4780
65
XVI.
I
u
16
= hb + u, 2u
5
+ 5u
3
3u
2
+ a + 3u 2, u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
2u
5
5u
3
+ 3u
2
3u + 2
u
a
8
=
u
5
u
4
+ 3u
3
3u
2
+ 4u 1
u
5
+ u
4
3u
3
+ 4u
2
3u + 2
a
12
=
2u
5
5u
3
+ 3u
2
2u + 2
u
a
2
=
2u
5
+ u
4
5u
3
+ 6u
2
4u + 3
u
2
a
1
=
2u
5
5u
3
+ 4u
2
3u + 2
u
5
+ u
4
3u
3
+ 2u
2
3u + 1
a
6
=
u
u
3
+ u
a
5
=
u
5
+ 3u
3
2u
2
+ 3u 2
2u
5
u
4
+ 6u
3
4u
2
+ 5u 2
a
10
=
2u
4
4u
2
+ 3u 1
u
5
+ 3u
3
2u
2
+ 2u 2
a
9
=
u
5
u
4
+ 2u
3
3u
2
+ 3u 1
u
3
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
6u
3
+ 3u
2
3u 5
66
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1
c
2
, c
6
, c
8
c
12
u
6
+ u
5
+ 3u
4
+ 4u
3
+ 4u
2
+ 3u + 1
c
3
, c
5
, c
9
c
11
u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1
c
4
, c
10
u
6
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1
67
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
6
+ 2y
3
+ 4y
2
+ 3y + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
2y
2
y + 1
68
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
16
1(vol +
1CS) Cusp shape
u = 0.232606 + 0.943705I
a = 0.215080 + 1.307140I
b = 0.232606 0.943705I
0.459731 0.942707I 6.98708 + 1.68684I
u = 0.232606 0.943705I
a = 0.215080 1.307140I
b = 0.232606 + 0.943705I
0.459731 + 0.942707I 6.98708 1.68684I
u = 0.644833 + 0.198843I
a = 0.215080 1.307140I
b = 0.644833 0.198843I
0.459731 + 0.942707I 6.98708 1.68684I
u = 0.644833 0.198843I
a = 0.215080 + 1.307140I
b = 0.644833 + 0.198843I
0.459731 0.942707I 6.98708 + 1.68684I
u = 0.37744 + 1.47725I
a = 0.569840
b = 0.37744 1.47725I
12.2400 6 1.025846 + 0.10I
u = 0.37744 1.47725I
a = 0.569840
b = 0.37744 + 1.47725I
12.2400 6 1.025846 + 0.10I
69
XVII.
I
u
17
= h−u
5
+ u
4
+ b u, u
4
+ u
3
+ a 1, u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
u
4
u
3
+ 1
u
5
u
4
+ u
a
8
=
2u
5
+ 3u
4
u
3
+ u
2
2u
u
5
+ 3u
4
3u
3
+ 2u
2
u + 2
a
12
=
u
5
+ 2u
4
u
3
u + 1
u
5
u
4
+ u
a
2
=
u
5
+ 2u
3
u
2
1
u
5
+ 3u
4
3u
3
+ 2u
2
2u + 2
a
1
=
2u
5
+ 2u
4
+ u
3
u
2
u 1
u
4
2u
3
+ u
2
u + 2
a
6
=
u
u
3
+ u
a
5
=
2u
4
+ 3u
3
u
2
+ 2u 3
2u
5
+ 4u
4
2u
3
+ 2u
2
3u + 1
a
10
=
u
5
3u
4
+ 3u
3
2u
2
+ 3u 2
2u
5
+ 3u
4
2u
3
+ 2u
2
2u
a
9
=
2u
5
4u
4
+ 2u
3
u
2
+ 3u 1
2u
5
+ 2u
4
+ u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
6u
3
+ 3u
2
3u 2
70
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
11
u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1
c
2
, c
4
, c
8
c
10
u
6
+ u
5
+ 3u
4
+ 4u
3
+ 4u
2
+ 3u + 1
c
3
, c
9
u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1
c
6
, c
12
u
6
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1
71
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
6
+ 5y
5
+ 9y
4
+ 4y
3
2y
2
y + 1
c
3
, c
6
, c
9
c
12
y
6
+ 2y
3
+ 4y
2
+ 3y + 1
72
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
17
1(vol +
1CS) Cusp shape
u = 0.398606 + 0.800120I
a = 0.122561 + 0.744862I
b = 0.644833 0.198843I
0.459731 + 0.942707I 6.98708 1.68684I
u = 0.398606 0.800120I
a = 0.122561 0.744862I
b = 0.644833 + 0.198843I
0.459731 0.942707I 6.98708 + 1.68684I
u = 0.215080 + 0.841795I
a = 1.75488
b = 0.37744 + 1.47725I
12.2400 6 1.025846 + 0.10I
u = 0.215080 0.841795I
a = 1.75488
b = 0.37744 1.47725I
12.2400 6 1.025846 + 0.10I
u = 1.183530 + 0.507021I
a = 0.122561 + 0.744862I
b = 0.232606 + 0.943705I
0.459731 + 0.942707I 6.98708 1.68684I
u = 1.183530 0.507021I
a = 0.122561 0.744862I
b = 0.232606 0.943705I
0.459731 0.942707I 6.98708 + 1.68684I
73
XVIII.
I
u
18
= h2u
5
u
4
+5u
3
5u
2
+b+4u2, a+1, u
6
u
5
+3u
4
4u
3
+4u
2
3u+1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
2u
5
+ u
4
5u
3
+ 5u
2
4u + 2
a
8
=
u
u
5
+ u
4
3u
3
+ 4u
2
3u + 2
a
12
=
2u
5
u
4
+ 5u
3
5u
2
+ 4u 3
2u
5
+ u
4
5u
3
+ 5u
2
4u + 2
a
2
=
2u
5
+ u
4
6u
3
+ 5u
2
6u + 4
u
3
+ 2u 1
a
1
=
u
5
+ u
4
3u
3
+ 3u
2
3u + 2
u
5
u
4
+ 4u
3
3u
2
+ 4u 2
a
6
=
u
u
3
+ u
a
5
=
u
5
+ 2u
3
u
2
+ 2u
u
3
u
2
+ u 1
a
10
=
u
2
1
2u
5
+ u
4
5u
3
+ 6u
2
5u + 3
a
9
=
2u
5
5u
3
+ 2u
2
4u + 1
u
5
+ u
4
3u
3
+ 5u
2
4u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
6u
3
+ 3u
2
3u 5
74
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1
c
2
, c
8
u
6
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1
c
4
, c
6
, c
10
c
12
u
6
+ u
5
+ 3u
4
+ 4u
3
+ 4u
2
+ 3u + 1
c
5
, c
11
u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1
75
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
2y
2
y + 1
c
2
, c
5
, c
8
c
11
y
6
+ 2y
3
+ 4y
2
+ 3y + 1
76
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
18
1(vol +
1CS) Cusp shape
u = 0.232606 + 0.943705I
a = 1.00000
b = 1.183530 + 0.507021I
0.459731 0.942707I 6.98708 + 1.68684I
u = 0.232606 0.943705I
a = 1.00000
b = 1.183530 0.507021I
0.459731 + 0.942707I 6.98708 1.68684I
u = 0.644833 + 0.198843I
a = 1.00000
b = 0.398606 0.800120I
0.459731 + 0.942707I 6.98708 1.68684I
u = 0.644833 0.198843I
a = 1.00000
b = 0.398606 + 0.800120I
0.459731 0.942707I 6.98708 + 1.68684I
u = 0.37744 + 1.47725I
a = 1.00000
b = 0.215080 + 0.841795I
12.2400 6 1.025846 + 0.10I
u = 0.37744 1.47725I
a = 1.00000
b = 0.215080 0.841795I
12.2400 6 1.025846 + 0.10I
77
XIX. I
u
19
= hb u, a + 1, u
4
+ 2u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
a
8
=
u
u
2
+ u
a
12
=
u 1
u
a
2
=
u
2
+ u + 1
u
2
a
1
=
u
3
+ 2u
2
+ 3u + 2
u
3
+ u
2
+ u + 1
a
6
=
u
u
3
+ u
a
5
=
u
3
+ u
2
+ 2u + 1
u
3
+ u
2
+ u
a
10
=
u
2
1
u
3
+ u
2
+ u
a
9
=
u
2
u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
6u
2
6u 6
78
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(u
2
u + 1)
2
79
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y
2
+ y + 1)
2
80
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
19
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
3.28987 6.00000 + 0.I
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
3.28987 6.00000 + 0.I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 0.866025I
3.28987 6.00000 + 0.I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 0.866025I
3.28987 6.00000 + 0.I
81
XX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
, c
11
(u 1)
2
(u
2
+ 3)(u
2
u + 1)
2
(u
2
+ u + 1)
4
(u
3
u
2
+ 2u 1)
· (u
3
u
2
+ 2u + 1)(u
4
+ u
2
+ 2u + 1)(u
5
+ u
4
+ ··· + 3u + 1)
2
· (u
6
2u
5
+ 2u
4
2u
3
+ 2u
2
u + 1)
· (u
6
u
5
+ 3u
4
4u
3
+ 4u
2
3u + 1)
2
· (u
10
+ 2u
9
+ 3u
8
+ 6u
7
+ 8u
6
+ 8u
5
+ 11u
4
+ 8u
3
+ 7u
2
+ 4u + 1)
2
· (u
16
9u
15
+ ··· 64u + 32)(u
16
+ u
15
+ ··· + 3u + 1)
2
c
2
, c
4
, c
6
c
8
, c
10
, c
12
(u 1)
2
(u
2
+ 3)(u
2
u + 1)
4
(u
2
+ u + 1)
2
(u
3
u
2
+ 2u + 1)
· (u
3
+ u
2
+ 2u + 1)(u
4
+ u
2
2u + 1)(u
5
+ u
4
+ ··· + 3u + 1)
2
· (u
6
+ u
5
+ 3u
4
+ 4u
3
+ 4u
2
+ 3u + 1)
2
· (u
6
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1)
· (u
10
+ 2u
9
+ 3u
8
+ 6u
7
+ 8u
6
+ 8u
5
+ 11u
4
+ 8u
3
+ 7u
2
+ 4u + 1)
2
· (u
16
9u
15
+ ··· 64u + 32)(u
16
+ u
15
+ ··· + 3u + 1)
2
82
XXI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
((y 1)
2
)(y + 3)
2
(y
2
+ y + 1)
6
(y
3
+ 3y
2
+ 2y 1)(y
3
+ 3y
2
+ 6y 1)
· (y
4
+ 2y
3
+ 3y
2
2y + 1)(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
· (y
6
+ 2y
3
+ 4y
2
+ 3y + 1)(y
6
+ 5y
5
+ 9y
4
+ 4y
3
2y
2
y + 1)
2
· (y
10
+ 2y
9
+ y
8
+ 2y
7
+ 16y
6
+ 44y
5
+ 63y
4
+ 42y
3
+ 7y
2
2y + 1)
2
· (y
16
+ 11y
15
+ ··· 2560y + 1024)(y
16
+ 11y
15
+ ··· 3y + 1)
2
83