12n
0882
(K12n
0882
)
A knot diagram
1
Linearized knot diagam
4 11 7 10 11 12 4 12 1 5 3 9
Solving Sequence
4,10 5,7
8 11 3 12 2 1 6 9
c
4
c
7
c
10
c
3
c
11
c
2
c
1
c
6
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
12
8u
11
26u
10
+ 41u
9
+ 59u
8
69u
7
42u
6
+ 9u
5
10u
4
+ 56u
3
+ u
2
+ 13b 5u + 10,
4u
12
+ 8u
11
+ 26u
10
41u
9
59u
8
+ 69u
7
+ 42u
6
9u
5
+ 10u
4
69u
3
u
2
+ 13a + 31u 10,
u
13
+ u
12
6u
11
6u
10
+ 13u
9
+ 14u
8
7u
7
13u
6
12u
5
+ 13u
3
+ 6u
2
+ 2u + 1i
I
u
2
= h−5.18174 × 10
46
u
47
1.01683 × 10
47
u
46
+ ··· + 3.77343 × 10
47
b 4.53377 × 10
47
,
2.81502 × 10
47
u
47
+ 3.21473 × 10
47
u
46
+ ··· + 1.25781 × 10
47
a + 4.62967 × 10
48
, u
48
+ u
47
+ ··· + 20u + 1i
I
u
3
= h−u
2
+ b + 1, u
3
+ u
2
+ a + 2u 1, u
5
3u
3
+ 2u + 1i
I
u
4
= h−u
2
+ b + 1, 2u
7
u
6
+ 11u
5
+ 3u
4
18u
3
+ 3u
2
+ a + 8u 9,
u
8
5u
6
+ u
5
+ 7u
4
4u
3
2u
2
+ 4u 1i
I
u
5
= hb + 1, a, u 1i
* 5 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4u
12
8u
11
+· · ·+13b+10, 4u
12
+8u
11
+· · ·+13a10, u
13
+u
12
+· · ·+2u+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
0.307692u
12
0.615385u
11
+ ··· 2.38462u + 0.769231
0.307692u
12
+ 0.615385u
11
+ ··· + 0.384615u 0.769231
a
8
=
u
3
2u
0.307692u
12
+ 0.615385u
11
+ ··· + 0.384615u 0.769231
a
11
=
u
u
3
+ u
a
3
=
0.538462u
12
0.0769231u
11
+ ··· + 3.07692u + 1.84615
1.07692u
12
+ 0.153846u
11
+ ··· 2.15385u 0.692308
a
12
=
u
2
1
0.692308u
12
+ 0.384615u
11
+ ··· + 1.61538u 0.230769
a
2
=
1.46154u
12
+ 0.0769231u
11
+ ··· + 2.92308u + 2.15385
1.46154u
12
0.0769231u
11
+ ··· 2.92308u 1.15385
a
1
=
1
1.46154u
12
0.0769231u
11
+ ··· 2.92308u 1.15385
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
1.38462u
12
+ 0.769231u
11
+ ··· 0.769231u 1.46154
(ii) Obstruction class = 1
(iii) Cusp Shapes =
42
13
u
12
+
20
13
u
11
18u
10
122
13
u
9
+
483
13
u
8
+
309
13
u
7
285
13
u
6
367
13
u
5
300
13
u
4
+
94
13
u
3
+
394
13
u
2
+
162
13
u +
157
13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
12u
12
+ ··· + 352u 32
c
2
, c
3
, c
7
c
11
u
13
3u
11
+ 9u
9
+ u
8
12u
7
+ u
6
+ 16u
5
u
4
11u
3
+ 3u
2
+ 4u 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
u
13
u
12
+ ··· + 2u 1
c
6
u
13
+ 11u
12
+ ··· 208u 56
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 8y
12
+ ··· + 42496y 1024
c
2
, c
3
, c
7
c
11
y
13
6y
12
+ ··· + 22y 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
13
13y
12
+ ··· 8y 1
c
6
y
13
+ y
12
+ ··· + 5408y 3136
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.171620 + 0.859681I
a = 0.34697 1.56070I
b = 1.065670 0.718049I
2.17962 5.84511I 7.45794 + 6.04290I
u = 0.171620 0.859681I
a = 0.34697 + 1.56070I
b = 1.065670 + 0.718049I
2.17962 + 5.84511I 7.45794 6.04290I
u = 1.309140 + 0.064534I
a = 0.581299 0.674191I
b = 0.972284 + 0.876654I
8.82263 + 2.58229I 16.9820 3.0015I
u = 1.309140 0.064534I
a = 0.581299 + 0.674191I
b = 0.972284 0.876654I
8.82263 2.58229I 16.9820 + 3.0015I
u = 1.356440 + 0.275517I
a = 0.256447 + 0.156488I
b = 0.782477 + 0.792358I
5.13873 + 2.17385I 13.57691 0.52106I
u = 1.356440 0.275517I
a = 0.256447 0.156488I
b = 0.782477 0.792358I
5.13873 2.17385I 13.57691 + 0.52106I
u = 1.356860 + 0.395151I
a = 1.72651 + 1.21374I
b = 0.875267 + 0.116755I
9.39305 + 5.41911I 19.2364 4.1129I
u = 1.356860 0.395151I
a = 1.72651 1.21374I
b = 0.875267 0.116755I
9.39305 5.41911I 19.2364 + 4.1129I
u = 0.537178
a = 1.16207
b = 0.242725
0.805138 11.7720
u = 1.48836 + 0.39264I
a = 1.67676 + 0.98279I
b = 1.30871 + 0.78070I
8.6054 15.1865I 15.2811 + 7.9689I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48836 0.39264I
a = 1.67676 0.98279I
b = 1.30871 0.78070I
8.6054 + 15.1865I 15.2811 7.9689I
u = 0.024401 + 0.393610I
a = 0.640545 1.244220I
b = 0.700673 + 0.396722I
1.07099 1.38837I 7.07977 + 4.85651I
u = 0.024401 0.393610I
a = 0.640545 + 1.244220I
b = 0.700673 0.396722I
1.07099 + 1.38837I 7.07977 4.85651I
6
II.
I
u
2
= h−5.18×10
46
u
47
1.02×10
47
u
46
+· · ·+3.77×10
47
b4.53×10
47
, 2.82×
10
47
u
47
+3.21×10
47
u
46
+· · ·+1.26×10
47
a+4.63×10
48
, u
48
+u
47
+· · ·+20u+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
2.23803u
47
2.55582u
46
+ ··· 95.9559u 36.8074
0.137322u
47
+ 0.269470u
46
+ ··· + 10.2860u + 1.20150
a
8
=
2.10071u
47
2.28635u
46
+ ··· 85.6699u 35.6059
0.137322u
47
+ 0.269470u
46
+ ··· + 10.2860u + 1.20150
a
11
=
u
u
3
+ u
a
3
=
1.66504u
47
1.59037u
46
+ ··· 127.758u 32.3177
0.0330654u
47
+ 0.122014u
46
+ ··· 10.8225u + 0.0377011
a
12
=
2.91125u
47
2.61233u
46
+ ··· 182.706u 53.5737
0.168578u
47
+ 0.0577104u
46
+ ··· 0.407278u + 0.897363
a
2
=
1.68717u
47
1.75245u
46
+ ··· 125.467u 32.2876
0.0461378u
47
+ 0.188914u
46
+ ··· 11.3519u 0.0721935
a
1
=
1.64103u
47
1.56354u
46
+ ··· 136.819u 32.3598
0.0461378u
47
+ 0.188914u
46
+ ··· 11.3519u 0.0721935
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
2.76666u
47
+ 2.69855u
46
+ ··· + 205.087u + 52.5080
0.111644u
47
+ 0.153944u
46
+ ··· + 8.10592u 0.451941
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.00373u
47
2.03203u
46
+ ··· 42.9306u 8.93702
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
24
+ 2u
23
+ ··· 20u 1)
2
c
2
, c
3
, c
7
c
11
u
48
u
47
+ ··· 197u + 73
c
4
, c
5
, c
8
c
9
, c
10
, c
12
u
48
u
47
+ ··· 20u + 1
c
6
(u
24
5u
23
+ ··· + 15u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
24
+ 4y
23
+ ··· 522y + 1)
2
c
2
, c
3
, c
7
c
11
y
48
23y
47
+ ··· 76039y + 5329
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
48
43y
47
+ ··· 216y + 1
c
6
(y
24
3y
23
+ ··· 135y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.379137 + 0.976493I
a = 0.471549 + 1.157640I
b = 1.29469 + 0.67005I
2.67292 + 10.25690I 12.1975 7.6788I
u = 0.379137 0.976493I
a = 0.471549 1.157640I
b = 1.29469 0.67005I
2.67292 10.25690I 12.1975 + 7.6788I
u = 0.021423 + 0.948358I
a = 0.401732 + 0.737665I
b = 0.856499 + 0.135005I
4.94291 0.58720I 16.0412 0.8168I
u = 0.021423 0.948358I
a = 0.401732 0.737665I
b = 0.856499 0.135005I
4.94291 + 0.58720I 16.0412 + 0.8168I
u = 1.023260 + 0.490646I
a = 0.476231 + 0.027830I
b = 1.044720 0.584882I
0.464120 + 1.081590I 8.00000 2.00672I
u = 1.023260 0.490646I
a = 0.476231 0.027830I
b = 1.044720 + 0.584882I
0.464120 1.081590I 8.00000 + 2.00672I
u = 0.379291 + 0.739173I
a = 0.316811 + 0.748267I
b = 0.248462 + 1.064600I
0.51929 4.00862I 8.65058 + 5.80685I
u = 0.379291 0.739173I
a = 0.316811 0.748267I
b = 0.248462 1.064600I
0.51929 + 4.00862I 8.65058 5.80685I
u = 1.135680 + 0.336882I
a = 0.864140 0.699527I
b = 0.713544 0.730081I
0.51929 + 4.00862I 8.00000 5.80685I
u = 1.135680 0.336882I
a = 0.864140 + 0.699527I
b = 0.713544 + 0.730081I
0.51929 4.00862I 8.00000 + 5.80685I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.750478 + 0.292577I
a = 1.176600 + 0.468222I
b = 0.319389 + 0.477318I
0.664158 9.39053 + 0.I
u = 0.750478 0.292577I
a = 1.176600 0.468222I
b = 0.319389 0.477318I
0.664158 9.39053 + 0.I
u = 1.163220 + 0.303346I
a = 0.223618 0.467491I
b = 1.004700 + 0.471049I
4.64466 15.0647 + 0.I
u = 1.163220 0.303346I
a = 0.223618 + 0.467491I
b = 1.004700 0.471049I
4.64466 15.0647 + 0.I
u = 0.141459 + 0.765036I
a = 0.561104 0.769052I
b = 0.623240 0.846147I
3.53422 4.26168 + 0.I
u = 0.141459 0.765036I
a = 0.561104 + 0.769052I
b = 0.623240 + 0.846147I
3.53422 4.26168 + 0.I
u = 0.068175 + 0.762824I
a = 0.696604 + 1.029800I
b = 0.970507 + 0.650047I
1.27885 + 3.92180I 9.29302 3.73808I
u = 0.068175 0.762824I
a = 0.696604 1.029800I
b = 0.970507 0.650047I
1.27885 3.92180I 9.29302 + 3.73808I
u = 1.235930 + 0.167013I
a = 0.657445 0.412560I
b = 0.705420 + 0.391760I
4.65694 + 3.47868I 0
u = 1.235930 0.167013I
a = 0.657445 + 0.412560I
b = 0.705420 0.391760I
4.65694 3.47868I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.916403 + 0.885493I
a = 0.391708 0.248635I
b = 1.329710 + 0.460814I
4.14619 4.10761I 0
u = 0.916403 0.885493I
a = 0.391708 + 0.248635I
b = 1.329710 0.460814I
4.14619 + 4.10761I 0
u = 1.265470 + 0.153865I
a = 2.80490 0.73050I
b = 0.791562 + 0.363762I
4.94291 0.58720I 0
u = 1.265470 0.153865I
a = 2.80490 + 0.73050I
b = 0.791562 0.363762I
4.94291 + 0.58720I 0
u = 1.263720 + 0.231617I
a = 2.48042 + 2.19572I
b = 0.811085 + 0.535687I
4.14619 4.10761I 0
u = 1.263720 0.231617I
a = 2.48042 2.19572I
b = 0.811085 0.535687I
4.14619 + 4.10761I 0
u = 1.28856
a = 0.869778
b = 0.755603
14.0810 25.5770
u = 1.32785
a = 4.15788
b = 0.885530
14.6478 0
u = 1.330000 + 0.048649I
a = 2.39749 + 0.12309I
b = 1.065850 + 0.841425I
9.08685 + 4.24572I 0
u = 1.330000 0.048649I
a = 2.39749 0.12309I
b = 1.065850 0.841425I
9.08685 4.24572I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.309300 + 0.318007I
a = 0.889440 + 0.821935I
b = 0.928244 + 0.711653I
5.58448 7.81589I 0
u = 1.309300 0.318007I
a = 0.889440 0.821935I
b = 0.928244 0.711653I
5.58448 + 7.81589I 0
u = 1.316980 + 0.405826I
a = 0.548637 + 0.081279I
b = 0.803853 + 0.148006I
9.08685 4.24572I 0
u = 1.316980 0.405826I
a = 0.548637 0.081279I
b = 0.803853 0.148006I
9.08685 + 4.24572I 0
u = 0.087131 + 0.611347I
a = 0.35264 + 2.45893I
b = 0.721176 + 0.611639I
0.464120 + 1.081590I 8.16075 2.00672I
u = 0.087131 0.611347I
a = 0.35264 2.45893I
b = 0.721176 0.611639I
0.464120 1.081590I 8.16075 + 2.00672I
u = 1.373810 + 0.321857I
a = 0.344264 + 0.528075I
b = 0.621802 0.993232I
1.27885 3.92180I 0
u = 1.373810 0.321857I
a = 0.344264 0.528075I
b = 0.621802 + 0.993232I
1.27885 + 3.92180I 0
u = 1.36990 + 0.36882I
a = 1.75795 1.37725I
b = 1.073560 0.763448I
2.67292 + 10.25690I 0
u = 1.36990 0.36882I
a = 1.75795 + 1.37725I
b = 1.073560 + 0.763448I
2.67292 10.25690I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49633 + 0.29266I
a = 0.376487 0.561865I
b = 0.34302 + 1.38502I
5.58448 + 7.81589I 0
u = 1.49633 0.29266I
a = 0.376487 + 0.561865I
b = 0.34302 1.38502I
5.58448 7.81589I 0
u = 1.65947
a = 1.72670
b = 1.72233
10.1445 0
u = 1.66105
a = 1.80640
b = 2.14588
14.0810 0
u = 1.81988
a = 1.44716
b = 1.67660
14.6478 0
u = 0.024167 + 0.177554I
a = 0.54655 + 4.54825I
b = 1.041510 + 0.853951I
4.65694 3.47868I 16.3031 + 8.4838I
u = 0.024167 0.177554I
a = 0.54655 4.54825I
b = 1.041510 0.853951I
4.65694 + 3.47868I 16.3031 8.4838I
u = 0.0602179
a = 35.2967
b = 0.822371
10.1445 9.41450
14
III. I
u
3
= h−u
2
+ b + 1, u
3
+ u
2
+ a + 2u 1, u
5
3u
3
+ 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
u
3
u
2
2u + 1
u
2
1
a
8
=
u
3
2u
u
2
1
a
11
=
u
u
3
+ u
a
3
=
u
4
+ 2u
2
1
u
4
2u
2
+ 1
a
12
=
u
2
1
u
3
u
2
+ 2u + 1
a
2
=
u
4
u
3
+ 2u
2
+ u 1
u
4
+ u
3
2u
2
u
a
1
=
1
u
4
+ u
3
2u
2
u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
u
4
+ u
3
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
3u
3
+ 3u
2
+ 2u + 17
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
2u
4
+ 5u
3
4u
2
1
c
2
, c
7
u
5
+ u
4
u
3
u
2
+ 1
c
3
, c
11
u
5
u
4
u
3
+ u
2
1
c
4
, c
5
, c
8
c
9
u
5
3u
3
+ 2u + 1
c
6
u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ 3u + 1
c
10
, c
12
u
5
3u
3
+ 2u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
+ 6y
4
+ 9y
3
20y
2
8y 1
c
2
, c
3
, c
7
c
11
y
5
3y
4
+ 3y
3
3y
2
+ 2y 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
5
6y
4
+ 13y
3
12y
2
+ 4y 1
c
6
y
5
+ 2y
4
+ 3y
3
+ 5y
2
+ 3y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.297630 + 0.272489I
a = 1.308900 + 0.104091I
b = 0.609585 + 0.707177I
7.56155 + 5.69445I 14.5549 5.9553I
u = 1.297630 0.272489I
a = 1.308900 0.104091I
b = 0.609585 0.707177I
7.56155 5.69445I 14.5549 + 5.9553I
u = 0.516079 + 0.312340I
a = 1.87697 0.08320I
b = 0.831219 0.322384I
2.00050 + 0.85728I 16.5843 0.7821I
u = 0.516079 0.312340I
a = 1.87697 + 0.08320I
b = 0.831219 + 0.322384I
2.00050 0.85728I 16.5843 + 0.7821I
u = 1.56310
a = 2.13614
b = 1.44327
17.0644 20.7220
18
IV.
I
u
4
= h−u
2
+b+1, 2u
7
u
6
+· · ·+a9, u
8
5u
6
+u
5
+7u
4
4u
3
2u
2
+4u1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
7
=
2u
7
+ u
6
11u
5
3u
4
+ 18u
3
3u
2
8u + 9
u
2
1
a
8
=
2u
7
+ u
6
11u
5
3u
4
+ 18u
3
2u
2
8u + 8
u
2
1
a
11
=
u
u
3
+ u
a
3
=
3u
7
u
6
+ 14u
5
+ u
4
18u
3
+ 6u
2
+ 6u 7
u
4
2u
2
+ 1
a
12
=
4u
7
+ 2u
6
19u
5
5u
4
+ 26u
3
5u
2
11u + 12
u
5
4u
3
+ u
2
+ 3u 2
a
2
=
3u
7
+ 14u
5
2u
4
17u
3
+ 7u
2
+ 4u 7
u
6
+ 4u
4
u
3
3u
2
+ 2u
a
1
=
3u
7
u
6
+ 14u
5
+ 2u
4
18u
3
+ 4u
2
+ 6u 7
u
6
+ 4u
4
u
3
3u
2
+ 2u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
3u
7
+ 15u
5
2u
4
21u
3
+ 9u
2
+ 7u 11
u
7
+ u
6
4u
5
3u
4
+ 4u
3
+ u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
7
+ 5u
6
45u
5
10u
4
+ 60u
3
15u
2
25u + 42
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 3u
3
+ 4u
2
+ 4u + 1)
2
c
2
, c
7
u
8
+ 2u
7
3u
6
5u
5
+ 5u
4
+ 6u
3
u
2
3u 1
c
3
, c
11
u
8
2u
7
3u
6
+ 5u
5
+ 5u
4
6u
3
u
2
+ 3u 1
c
4
, c
5
, c
8
c
9
u
8
5u
6
+ u
5
+ 7u
4
4u
3
2u
2
+ 4u 1
c
6
(u
4
u
3
+ u
2
+ u 1)
2
c
10
, c
12
u
8
5u
6
u
5
+ 7u
4
+ 4u
3
2u
2
4u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
y
3
6y
2
8y + 1)
2
c
2
, c
3
, c
7
c
11
y
8
10y
7
+ 39y
6
81y
5
+ 101y
4
70y
3
+ 27y
2
7y + 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
8
10y
7
+ 39y
6
75y
5
+ 75y
4
42y
3
+ 22y
2
12y + 1
c
6
(y
4
+ y
3
+ y
2
3y + 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.220530 + 0.143929I
a = 0.57045 + 1.41533I
b = 0.468985 0.351339I
4.50609 2.52742I 14.9376 + 0.3938I
u = 1.220530 0.143929I
a = 0.57045 1.41533I
b = 0.468985 + 0.351339I
4.50609 + 2.52742I 14.9376 0.3938I
u = 0.475131 + 0.605600I
a = 0.0796516 + 0.0837240I
b = 1.141000 + 0.575478I
4.50609 2.52742I 14.9376 + 0.3938I
u = 0.475131 0.605600I
a = 0.0796516 0.0837240I
b = 1.141000 0.575478I
4.50609 + 2.52742I 14.9376 0.3938I
u = 1.26429
a = 1.67924
b = 0.598434
13.5577 8.81150
u = 1.63636
a = 1.79185
b = 1.67768
10.3288 34.3130
u = 0.313425
a = 6.69143
b = 0.901765
10.3288 34.3130
u = 1.72328
a = 1.59721
b = 1.96968
13.5577 8.81150
22
V. I
u
5
= hb + 1, a, u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
7
=
0
1
a
8
=
1
1
a
11
=
1
0
a
3
=
1
1
a
12
=
0
1
a
2
=
0
1
a
1
=
1
1
a
6
=
0
1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
11
u 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
u + 1
c
6
u
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y 1
c
6
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
4
+ 3u
3
+ 4u
2
+ 4u + 1)
2
(u
5
2u
4
+ 5u
3
4u
2
1)
· (u
13
12u
12
+ ··· + 352u 32)(u
24
+ 2u
23
+ ··· 20u 1)
2
c
2
, c
7
(u 1)(u
5
+ u
4
u
3
u
2
+ 1)
· (u
8
+ 2u
7
3u
6
5u
5
+ 5u
4
+ 6u
3
u
2
3u 1)
· (u
13
3u
11
+ 9u
9
+ u
8
12u
7
+ u
6
+ 16u
5
u
4
11u
3
+ 3u
2
+ 4u 1)
· (u
48
u
47
+ ··· 197u + 73)
c
3
, c
11
(u 1)(u
5
u
4
u
3
+ u
2
1)
· (u
8
2u
7
3u
6
+ 5u
5
+ 5u
4
6u
3
u
2
+ 3u 1)
· (u
13
3u
11
+ 9u
9
+ u
8
12u
7
+ u
6
+ 16u
5
u
4
11u
3
+ 3u
2
+ 4u 1)
· (u
48
u
47
+ ··· 197u + 73)
c
4
, c
5
, c
8
c
9
(u + 1)(u
5
3u
3
+ 2u + 1)(u
8
5u
6
+ ··· + 4u 1)
· (u
13
u
12
+ ··· + 2u 1)(u
48
u
47
+ ··· 20u + 1)
c
6
u(u
4
u
3
+ u
2
+ u 1)
2
(u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ 3u + 1)
· (u
13
+ 11u
12
+ ··· 208u 56)(u
24
5u
23
+ ··· + 15u 1)
2
c
10
, c
12
(u + 1)(u
5
3u
3
+ 2u 1)(u
8
5u
6
+ ··· 4u 1)
· (u
13
u
12
+ ··· + 2u 1)(u
48
u
47
+ ··· 20u + 1)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
4
y
3
6y
2
8y + 1)
2
(y
5
+ 6y
4
+ 9y
3
20y
2
8y 1)
· (y
13
+ 8y
12
+ ··· + 42496y 1024)(y
24
+ 4y
23
+ ··· 522y + 1)
2
c
2
, c
3
, c
7
c
11
(y 1)(y
5
3y
4
+ 3y
3
3y
2
+ 2y 1)
· (y
8
10y
7
+ 39y
6
81y
5
+ 101y
4
70y
3
+ 27y
2
7y + 1)
· (y
13
6y
12
+ ··· + 22y 1)(y
48
23y
47
+ ··· 76039y + 5329)
c
4
, c
5
, c
8
c
9
, c
10
, c
12
(y 1)(y
5
6y
4
+ 13y
3
12y
2
+ 4y 1)
· (y
8
10y
7
+ 39y
6
75y
5
+ 75y
4
42y
3
+ 22y
2
12y + 1)
· (y
13
13y
12
+ ··· 8y 1)(y
48
43y
47
+ ··· 216y + 1)
c
6
y(y
4
+ y
3
+ y
2
3y + 1)
2
(y
5
+ 2y
4
+ 3y
3
+ 5y
2
+ 3y 1)
· (y
13
+ y
12
+ ··· + 5408y 3136)(y
24
3y
23
+ ··· 135y + 1)
2
28