12n
0887
(K12n
0887
)
A knot diagram
1
Linearized knot diagam
5 6 7 1 11 12 4 12 1 2 3 9
Solving Sequence
2,6 3,11
12 7 5 1 4 8 10 9
c
2
c
11
c
6
c
5
c
1
c
4
c
7
c
10
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= hb + u, u
4
2u
3
2u
2
+ a 2, u
5
+ 3u
4
+ 4u
3
+ 2u
2
+ 2u + 1i
I
u
2
= hb + u, 270959u
13
+ 772689u
12
+ ··· + 300046a 41334,
u
14
2u
13
u
12
+ 2u
11
+ 10u
10
9u
9
29u
8
+ 46u
7
+ 16u
6
61u
5
+ 18u
4
+ 22u
3
14u
2
+ 3u 1i
I
u
3
= h−135792u
13
+ 108799u
12
+ ··· + 300046b + 457605,
230771u
13
+ 274896u
12
+ ··· + 300046a 29087,
u
14
2u
13
u
12
+ 2u
11
+ 10u
10
9u
9
29u
8
+ 46u
7
+ 16u
6
61u
5
+ 18u
4
+ 22u
3
14u
2
+ 3u 1i
I
u
4
= h−104218005u
13
+ 702274247u
12
+ ··· + 190982362b + 773333180,
544231529u
13
3353087149u
12
+ ··· + 763929448a 3082001714, u
14
7u
13
+ ··· 8u + 4i
I
u
5
= h−180047861u
13
+ 1175460277u
12
+ ··· + 381964724b + 1337790626,
158399813u
13
1046466799u
12
+ ··· + 381964724a 2606371288, u
14
7u
13
+ ··· 8u + 4i
I
u
6
= h−103563766675u
13
565696363294u
12
+ ··· + 912579422726b + 472806896800,
218496302654u
13
+ 1210683237470u
12
+ ··· + 912579422726a 6915383452949,
u
14
+ 6u
13
+ ··· 22u + 4i
I
u
7
= hb + u, u
2
+ a u + 2, u
3
2u
2
+ 3u 1i
I
u
8
= hb, a + u + 1, u
2
+ u 1i
I
u
9
= hb, a
2
a 1, u 1i
I
u
10
= hb + u, a + 1, u
2
+ u 1i
I
v
1
= ha, b + 1, v
2
v 1i
I
v
2
= ha, b v 1, v
2
+ v 1i
* 12 irreducible components of dim
C
= 0, with total 88 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hb + u, u
4
2u
3
2u
2
+ a 2, u
5
+ 3u
4
+ 4u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
u
4
+ 2u
3
+ 2u
2
+ 2
u
a
12
=
1
u
4
+ 2u
3
+ u
2
+ 1
a
7
=
u
u
4
3u
3
2u
2
1
a
5
=
2u
4
5u
3
5u
2
u 3
u
4
2u
3
2u
2
1
a
1
=
2u
4
5u
3
6u
2
u 3
u
4
3u
3
3u
2
u 2
a
4
=
u
4
+ 2u
3
+ 2u
2
+ u + 2
u
2
+ 1
a
8
=
u
4
+ 3u
3
+ 3u
2
+ u + 2
u
4
+ u
3
+ u
2
+ u + 1
a
10
=
u
4
+ 2u
3
+ 2u
2
+ u + 2
u
a
9
=
2u
4
5u
3
5u
2
u 3
u
4
2u
3
3u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
10u
3
10u
2
+ 5u 14
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
11
, c
12
u
5
+ 2u
4
4u
2
3u 1
c
2
, c
6
, c
10
u
5
3u
4
+ 4u
3
2u
2
+ 2u 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
11
, c
12
y
5
4y
4
+ 10y
3
12y
2
+ y 1
c
2
, c
6
, c
10
y
5
y
4
+ 8y
3
+ 6y
2
1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.179794 + 0.731571I
a = 0.612209 0.379621I
b = 0.179794 0.731571I
0.867863 1.011200I 6.16207 + 5.55596I
u = 0.179794 0.731571I
a = 0.612209 + 0.379621I
b = 0.179794 + 0.731571I
0.867863 + 1.011200I 6.16207 5.55596I
u = 0.583195
a = 2.39920
b = 0.583195
12.9336 18.9120
u = 1.38820 + 1.04608I
a = 0.311811 0.840240I
b = 1.38820 1.04608I
0.8900 17.3034I 9.38193 + 9.43159I
u = 1.38820 1.04608I
a = 0.311811 + 0.840240I
b = 1.38820 + 1.04608I
0.8900 + 17.3034I 9.38193 9.43159I
6
II. I
u
2
= hb + u, 2.71 × 10
5
u
13
+ 7.73 × 10
5
u
12
+ · · · + 3.00 × 10
5
a 4.13 ×
10
4
, u
14
2u
13
+ · · · + 3u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
0.903058u
13
2.57524u
12
+ ··· 24.1076u + 0.137759
u
a
12
=
1.52512u
13
3.50280u
12
+ ··· 26.3180u + 0.906878
0.0795245u
13
+ 0.200289u
12
+ ··· 0.672414u 0.316548
a
7
=
2.15993u
13
4.52017u
12
+ ··· 23.6907u 9.18261
0.882721u
13
0.910147u
12
+ ··· 2.84412u + 0.797954
a
5
=
3.24733u
13
5.66143u
12
+ ··· 27.2367u 6.98262
0.622058u
13
0.927568u
12
+ ··· 2.21041u + 0.769119
a
1
=
2.48254u
13
4.44656u
12
+ ··· 20.0427u + 1.25212
1.00470u
13
+ 1.07172u
12
+ ··· + 2.53232u 1.63459
a
4
=
4.54266u
13
6.82224u
12
+ ··· 22.7975u 5.41276
1.44675u
13
+ 2.26522u
12
+ ··· + 0.459690u 0.830456
a
8
=
0.842261u
13
0.940929u
12
+ ··· 12.2541u 1.81451
0.403411u
13
0.923072u
12
+ ··· 1.22177u + 0.811476
a
10
=
0.903058u
13
2.57524u
12
+ ··· 23.1076u + 0.137759
u
a
9
=
1.43263u
13
2.87432u
12
+ ··· 11.5747u + 2.51098
1.18195u
13
+ 2.15844u
12
+ ··· + 0.00298621u 0.593296
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5034313
300046
u
13
7498729
300046
u
12
+ ···
19035683
300046
u
5404048
150023
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
11
u
14
3u
13
+ ··· + 4u 1
c
2
, c
10
u
14
+ 2u
13
+ ··· 3u 1
c
3
, c
7
, c
8
c
9
, c
12
u
14
2u
13
+ ··· + 3u + 1
c
5
u
14
+ 11u
13
+ ··· + 32u + 16
c
6
u
14
+ 7u
13
+ ··· + 8u + 4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
11
y
14
5y
13
+ ··· 12y + 1
c
2
, c
10
y
14
6y
13
+ ··· + 19y + 1
c
3
, c
7
, c
8
c
9
, c
12
y
14
6y
13
+ ··· 29y + 1
c
5
y
14
3y
13
+ ··· 1952y + 256
c
6
y
14
3y
13
+ ··· 200y + 16
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.047510 + 0.114828I
a = 0.341221 0.956988I
b = 1.047510 0.114828I
4.40804 3.15243I 3.06554 + 3.15957I
u = 1.047510 0.114828I
a = 0.341221 + 0.956988I
b = 1.047510 + 0.114828I
4.40804 + 3.15243I 3.06554 3.15957I
u = 1.12842
a = 0.452479
b = 1.12842
9.22310 8.50330
u = 0.798926 + 0.304657I
a = 0.99674 + 1.31288I
b = 0.798926 0.304657I
1.89333 + 9.70124I 6.29823 7.45288I
u = 0.798926 0.304657I
a = 0.99674 1.31288I
b = 0.798926 + 0.304657I
1.89333 9.70124I 6.29823 + 7.45288I
u = 0.814809
a = 0.638076
b = 0.814809
2.25467 4.48040
u = 0.952273 + 1.033700I
a = 0.055278 1.038740I
b = 0.952273 1.033700I
3.68844 + 7.96253I 13.0881 6.5287I
u = 0.952273 1.033700I
a = 0.055278 + 1.038740I
b = 0.952273 + 1.033700I
3.68844 7.96253I 13.0881 + 6.5287I
u = 1.48112 + 0.64101I
a = 0.584752 0.699870I
b = 1.48112 0.64101I
1.71371 + 2.93592I 6.31999 3.15013I
u = 1.48112 0.64101I
a = 0.584752 + 0.699870I
b = 1.48112 + 0.64101I
1.71371 2.93592I 6.31999 + 3.15013I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.033817 + 0.274663I
a = 4.04711 6.52748I
b = 0.033817 0.274663I
2.83399 + 0.18487I 71.9536 3.7001I
u = 0.033817 0.274663I
a = 4.04711 + 6.52748I
b = 0.033817 + 0.274663I
2.83399 0.18487I 71.9536 + 3.7001I
u = 1.06182 + 1.50747I
a = 0.155646 0.589873I
b = 1.06182 1.50747I
2.33351 1.82562I 14.2631 + 3.2385I
u = 1.06182 1.50747I
a = 0.155646 + 0.589873I
b = 1.06182 + 1.50747I
2.33351 + 1.82562I 14.2631 3.2385I
11
III.
I
u
3
= h−1.36 × 10
5
u
13
+ 1.09 × 10
5
u
12
+ · · · + 3.00 × 10
5
b + 4.58 × 10
5
, 2.31 ×
10
5
u
13
+2.75×10
5
u
12
+· · ·+3.00×10
5
a2.91×10
4
, u
14
2u
13
+· · ·+3u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
0.769119u
13
0.916180u
12
+ ··· + 2.57142u + 0.0969418
0.452571u
13
0.362608u
12
+ ··· + 3.66847u 1.52512
a
12
=
1
0.769119u
13
0.916180u
12
+ ··· + 2.57142u 0.903058
a
7
=
u
0.622058u
13
0.927568u
12
+ ··· 2.21041u + 0.769119
a
5
=
1.63459u
13
2.26449u
12
+ ··· 4.67318u + 2.37146
0.0748585u
13
+ 0.195667u
12
+ ··· 0.0832706u + 0.597648
a
1
=
0.593296u
13
0.00463929u
12
+ ··· 1.94010u + 1.77690
0.00904861u
13
0.187515u
12
+ ··· + 1.78692u 1.43263
a
4
=
0.316548u
13
0.553572u
12
+ ··· 1.09706u + 1.62206
1.04594u
13
1.11069u
12
+ ··· 2.61029u + 1.55507
a
8
=
1.55973u
13
+ 2.46016u
12
+ ··· + 4.58991u 1.77381
0.849263u
13
+ 0.915503u
12
+ ··· + 0.0414870u 0.171144
a
10
=
0.316548u
13
0.553572u
12
+ ··· 1.09706u + 1.62206
0.452571u
13
0.362608u
12
+ ··· + 3.66847u 1.52512
a
9
=
1.63459u
13
2.26449u
12
+ ··· 4.67318u + 2.37146
0.518507u
13
+ 0.943745u
12
+ ··· + 6.19549u 2.48254
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5034313
300046
u
13
7498729
300046
u
12
+ ···
19035683
300046
u
5404048
150023
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
c
9
, c
12
u
14
2u
13
+ ··· + 3u + 1
c
2
, c
6
u
14
+ 2u
13
+ ··· 3u 1
c
3
, c
5
, c
7
u
14
3u
13
+ ··· + 4u 1
c
10
u
14
+ 7u
13
+ ··· + 8u + 4
c
11
u
14
+ 11u
13
+ ··· + 32u + 16
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
9
, c
12
y
14
6y
13
+ ··· 29y + 1
c
2
, c
6
y
14
6y
13
+ ··· + 19y + 1
c
3
, c
5
, c
7
y
14
5y
13
+ ··· 12y + 1
c
10
y
14
3y
13
+ ··· 200y + 16
c
11
y
14
3y
13
+ ··· 1952y + 256
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.047510 + 0.114828I
a = 0.532678 0.963275I
b = 0.813064 + 0.209153I
4.40804 3.15243I 3.06554 + 3.15957I
u = 1.047510 0.114828I
a = 0.532678 + 0.963275I
b = 0.813064 0.209153I
4.40804 + 3.15243I 3.06554 3.15957I
u = 1.12842
a = 1.51059
b = 1.41289
9.22310 8.50330
u = 0.798926 + 0.304657I
a = 0.60365 1.35256I
b = 1.38404 0.90864I
1.89333 + 9.70124I 6.29823 7.45288I
u = 0.798926 0.304657I
a = 0.60365 + 1.35256I
b = 1.38404 + 0.90864I
1.89333 9.70124I 6.29823 + 7.45288I
u = 0.814809
a = 1.51991
b = 0.489180
2.25467 4.48040
u = 0.952273 + 1.033700I
a = 0.126389 + 0.932027I
b = 0.68808 + 1.33157I
3.68844 + 7.96253I 13.0881 6.5287I
u = 0.952273 1.033700I
a = 0.126389 0.932027I
b = 0.68808 1.33157I
3.68844 7.96253I 13.0881 + 6.5287I
u = 1.48112 + 0.64101I
a = 0.314710 + 0.661762I
b = 0.502930 + 0.079531I
1.71371 + 2.93592I 6.31999 3.15013I
u = 1.48112 0.64101I
a = 0.314710 0.661762I
b = 0.502930 0.079531I
1.71371 2.93592I 6.31999 + 3.15013I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.033817 + 0.274663I
a = 0.65600 + 1.33233I
b = 1.67998 + 1.44350I
2.83399 + 0.18487I 71.9536 3.7001I
u = 0.033817 0.274663I
a = 0.65600 1.33233I
b = 1.67998 1.44350I
2.83399 0.18487I 71.9536 + 3.7001I
u = 1.06182 + 1.50747I
a = 0.054484 0.391707I
b = 0.137112 1.014640I
2.33351 1.82562I 14.2631 + 3.2385I
u = 1.06182 1.50747I
a = 0.054484 + 0.391707I
b = 0.137112 + 1.014640I
2.33351 + 1.82562I 14.2631 3.2385I
16
IV.
I
u
4
= h−1.04 × 10
8
u
13
+ 7.02 × 10
8
u
12
+ · · · + 1.91 × 10
8
b + 7.73 × 10
8
, 5.44 ×
10
8
u
13
3.35×10
9
u
12
+· · ·+7.64×10
8
a3.08×10
9
, u
14
7u
13
+· · ·8u +4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
0.712411u
13
+ 4.38926u
12
+ ··· 2.59669u + 4.03441
0.545694u
13
3.67717u
12
+ ··· 1.57476u 4.04924
a
12
=
0.875598u
13
+ 5.65781u
12
+ ··· + 0.909320u + 5.69320
0.385393u
13
2.75155u
12
+ ··· 3.23742u 3.54428
a
7
=
0.0219389u
13
0.215291u
12
+ ··· + 1.15937u + 1.25670
0.633512u
13
3.93870u
12
+ ··· + 0.183271u 2.97735
a
5
=
0.755674u
13
4.78868u
12
+ ··· 1.91812u 0.628287
0.597612u
13
+ 3.80078u
12
+ ··· 1.66488u + 2.84964
a
1
=
0.260975u
13
+ 2.16396u
12
+ ··· + 9.73485u 0.384135
0.501039u
13
+ 2.86343u
12
+ ··· 5.41711u + 3.02270
a
4
=
0.704558u
13
4.30612u
12
+ ··· + 8.29987u 4.60248
0.260478u
13
+ 1.67796u
12
+ ··· 5.13681u + 3.89354
a
8
=
0.335015u
13
+ 1.43202u
12
+ ··· 15.3126u + 7.02714
1.42679u
13
8.60180u
12
+ ··· + 12.2718u 9.63626
a
10
=
1.25811u
13
+ 8.06643u
12
+ ··· 1.02194u + 8.08364
0.545694u
13
3.67717u
12
+ ··· 1.57476u 4.04924
a
9
=
0.347603u
13
+ 2.65881u
12
+ ··· + 8.17214u 0.167960
0.100728u
13
+ 0.305485u
12
+ ··· 5.18215u + 0.0153700
(ii) Obstruction class = 1
(iii) Cusp Shapes =
107270862
95491181
u
13
+
727704385
95491181
u
12
+ ··· +
409479316
95491181
u +
1040923639
95491181
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
u
14
2u
13
+ ··· + 3u + 1
c
2
u
14
+ 7u
13
+ ··· + 8u + 4
c
3
, c
7
u
14
+ 11u
13
+ ··· + 32u + 16
c
6
u
14
+ 2u
13
+ ··· 3u 1
c
8
, c
9
, c
11
c
12
u
14
3u
13
+ ··· + 4u 1
c
10
u
14
6u
13
+ ··· + 22u + 4
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
y
14
6y
13
+ ··· 29y + 1
c
2
y
14
3y
13
+ ··· 200y + 16
c
3
, c
7
y
14
3y
13
+ ··· 1952y + 256
c
6
y
14
6y
13
+ ··· + 19y + 1
c
8
, c
9
, c
11
c
12
y
14
5y
13
+ ··· 12y + 1
c
10
y
14
2y
13
+ ··· 1404y + 16
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.137112 + 1.014640I
a = 0.949623 + 0.496773I
b = 0.173211 + 0.432516I
2.33351 1.82562I 14.2631 + 3.2385I
u = 0.137112 1.014640I
a = 0.949623 0.496773I
b = 0.173211 0.432516I
2.33351 + 1.82562I 14.2631 3.2385I
u = 0.813064 + 0.209153I
a = 0.79509 + 1.24859I
b = 1.36286 + 0.56983I
4.40804 + 3.15243I 3.06554 3.15957I
u = 0.813064 0.209153I
a = 0.79509 1.24859I
b = 1.36286 0.56983I
4.40804 3.15243I 3.06554 + 3.15957I
u = 1.41289
a = 0.905913
b = 0.103858
9.22310 8.50330
u = 0.502930 + 0.079531I
a = 2.17945 + 1.56752I
b = 1.302400 + 0.217496I
1.71371 2.93592I 6.31999 + 3.15013I
u = 0.502930 0.079531I
a = 2.17945 1.56752I
b = 1.302400 0.217496I
1.71371 + 2.93592I 6.31999 3.15013I
u = 0.68808 + 1.33157I
a = 0.179430 + 0.509070I
b = 0.38414 + 1.74730I
3.68844 7.96253I 13.0881 + 6.5287I
u = 0.68808 1.33157I
a = 0.179430 0.509070I
b = 0.38414 1.74730I
3.68844 + 7.96253I 13.0881 6.5287I
u = 0.489180
a = 0.427228
b = 1.34067
2.25467 4.48040
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.38404 + 0.90864I
a = 0.389974 + 0.785688I
b = 1.50686 + 1.02119I
1.89333 + 9.70124I 6.29823 7.45288I
u = 1.38404 0.90864I
a = 0.389974 0.785688I
b = 1.50686 1.02119I
1.89333 9.70124I 6.29823 + 7.45288I
u = 1.67998 + 1.44350I
a = 0.318890 0.239126I
b = 1.00721 1.50515I
2.83399 0.18487I 71.9536 + 3.7001I
u = 1.67998 1.44350I
a = 0.318890 + 0.239126I
b = 1.00721 + 1.50515I
2.83399 + 0.18487I 71.9536 3.7001I
21
V.
I
u
5
= h−1.80 × 10
8
u
13
+ 1.18 × 10
9
u
12
+ · · · + 3.82 × 10
8
b + 1.34 × 10
9
, 1.58 ×
10
8
u
13
1.05×10
9
u
12
+· · ·+3.82×10
8
a2.61×10
9
, u
14
7u
13
+· · ·8u +4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
0.414697u
13
+ 2.73969u
12
+ ··· 3.00966u + 6.82359
0.471373u
13
3.07741u
12
+ ··· + 1.31159u 3.50239
a
12
=
1.01231u
13
+ 6.54047u
12
+ ··· 4.67453u + 9.67323
0.740305u
13
4.82414u
12
+ ··· + 1.98120u 5.03242
a
7
=
1.16635u
13
+ 7.52225u
12
+ ··· + 5.77401u + 5.72657
0.0197023u
13
+ 0.00389654u
12
+ ··· 1.19294u + 0.280982
a
5
=
1.71772u
13
+ 11.1301u
12
+ ··· + 1.42987u + 9.42170
0.687501u
13
4.38043u
12
+ ··· 0.398232u 2.73048
a
1
=
0.00384251u
13
+ 0.0738308u
12
+ ··· 1.45584u + 5.15141
0.225586u
13
+ 1.44342u
12
+ ··· + 2.94879u 1.39041
a
4
=
1.25811u
13
+ 8.06643u
12
+ ··· 1.02194u + 8.08364
0.859030u
13
5.23410u
12
+ ··· + 6.30713u 5.98392
a
8
=
2.51963u
13
+ 16.1117u
12
+ ··· + 5.02726u + 9.20450
1.26962u
13
7.85940u
12
+ ··· 3.00965u 2.20930
a
10
=
0.886071u
13
+ 5.81710u
12
+ ··· 4.32125u + 10.3260
0.471373u
13
3.07741u
12
+ ··· + 1.31159u 3.50239
a
9
=
0.755674u
13
4.78868u
12
+ ··· 1.91812u 0.628287
0.337134u
13
+ 2.12282u
12
+ ··· + 2.47194u 1.04390
(ii) Obstruction class = 1
(iii) Cusp Shapes =
107270862
95491181
u
13
+
727704385
95491181
u
12
+ ··· +
409479316
95491181
u +
1040923639
95491181
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
14
+ 11u
13
+ ··· + 32u + 16
c
2
u
14
+ 7u
13
+ ··· + 8u + 4
c
3
, c
7
, c
11
u
14
2u
13
+ ··· + 3u + 1
c
5
, c
8
, c
9
c
12
u
14
3u
13
+ ··· + 4u 1
c
6
u
14
6u
13
+ ··· + 22u + 4
c
10
u
14
+ 2u
13
+ ··· 3u 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
3y
13
+ ··· 1952y + 256
c
2
y
14
3y
13
+ ··· 200y + 16
c
3
, c
7
, c
11
y
14
6y
13
+ ··· 29y + 1
c
5
, c
8
, c
9
c
12
y
14
5y
13
+ ··· 12y + 1
c
6
y
14
2y
13
+ ··· 1404y + 16
c
10
y
14
6y
13
+ ··· + 19y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.137112 + 1.014640I
a = 0.238273 0.671186I
b = 1.06182 1.50747I
2.33351 1.82562I 14.2631 + 3.2385I
u = 0.137112 1.014640I
a = 0.238273 + 0.671186I
b = 1.06182 + 1.50747I
2.33351 + 1.82562I 14.2631 3.2385I
u = 0.813064 + 0.209153I
a = 0.833666 1.101810I
b = 1.047510 + 0.114828I
4.40804 + 3.15243I 3.06554 3.15957I
u = 0.813064 0.209153I
a = 0.833666 + 1.101810I
b = 1.047510 0.114828I
4.40804 3.15243I 3.06554 + 3.15957I
u = 1.41289
a = 1.20645
b = 1.12842
9.22310 8.50330
u = 0.502930 + 0.079531I
a = 1.48829 + 1.78312I
b = 1.48112 + 0.64101I
1.71371 2.93592I 6.31999 + 3.15013I
u = 0.502930 0.079531I
a = 1.48829 1.78312I
b = 1.48112 0.64101I
1.71371 + 2.93592I 6.31999 3.15013I
u = 0.68808 + 1.33157I
a = 0.116679 + 0.874213I
b = 0.952273 + 1.033700I
3.68844 7.96253I 13.0881 + 6.5287I
u = 0.68808 1.33157I
a = 0.116679 0.874213I
b = 0.952273 1.033700I
3.68844 + 7.96253I 13.0881 6.5287I
u = 0.489180
a = 2.53166
b = 0.814809
2.25467 4.48040
25
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.38404 + 0.90864I
a = 0.154326 0.749194I
b = 0.798926 0.304657I
1.89333 + 9.70124I 6.29823 7.45288I
u = 1.38404 0.90864I
a = 0.154326 + 0.749194I
b = 0.798926 + 0.304657I
1.89333 9.70124I 6.29823 + 7.45288I
u = 1.67998 + 1.44350I
a = 0.093149 + 0.160468I
b = 0.033817 + 0.274663I
2.83399 0.18487I 71.9536 + 3.7001I
u = 1.67998 1.44350I
a = 0.093149 0.160468I
b = 0.033817 0.274663I
2.83399 + 0.18487I 71.9536 3.7001I
26
VI. I
u
6
= h−1.04 × 10
11
u
13
5.66 × 10
11
u
12
+ · · · + 9.13 × 10
11
b + 4.73 ×
10
11
, 2.18 × 10
11
u
13
+ 1.21 × 10
12
u
12
+ · · · + 9.13 × 10
11
a 6.92 ×
10
12
, u
14
+ 6u
13
+ · · · 22u + 4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
0.239427u
13
1.32666u
12
+ ··· + 35.5972u + 7.57784
0.113485u
13
+ 0.619887u
12
+ ··· 5.68600u 0.518099
a
12
=
0.129525u
13
0.890634u
12
+ ··· + 37.9076u + 8.53555
0.170923u
13
0.751035u
12
+ ··· 0.331882u 1.41165
a
7
=
0.272337u
13
1.64583u
12
+ ··· + 47.2960u + 12.8665
0.0661284u
13
+ 0.355095u
12
+ ··· 6.57783u 0.988497
a
5
=
0.385980u
13
2.16522u
12
+ ··· + 38.6580u + 10.3813
0.0370222u
13
+ 0.196920u
12
+ ··· 5.74828u 0.941260
a
1
=
0.533234u
13
3.11779u
12
+ ··· + 76.0031u + 17.4936
0.131402u
13
+ 0.701437u
12
+ ··· 8.56416u 1.65838
a
4
=
0.557807u
13
+ 3.42037u
12
+ ··· 89.4565u 19.4330
0.136074u
13
0.709093u
12
+ ··· + 9.17768u + 1.95251
a
8
=
0.631605u
13
+ 3.86470u
12
+ ··· 91.9396u 22.1117
0.0965292u
13
0.519499u
12
+ ··· + 10.0526u + 2.25278
a
10
=
0.352912u
13
1.94655u
12
+ ··· + 41.2832u + 8.09594
0.113485u
13
+ 0.619887u
12
+ ··· 5.68600u 0.518099
a
9
=
0.414595u
13
2.61897u
12
+ ··· + 75.0173u + 17.6852
0.0816170u
13
0.301896u
12
+ ··· 5.76242u 2.13294
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
171368330863
456289711363
u
13
819360607574
456289711363
u
12
+ ··· +
7084810660394
456289711363
u
5008190287626
456289711363
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
u
14
3u
13
+ ··· + 4u 1
c
2
u
14
6u
13
+ ··· + 22u + 4
c
5
, c
11
u
14
2u
13
+ ··· + 3u + 1
c
6
, c
10
u
14
+ 7u
13
+ ··· + 8u + 4
c
8
, c
9
, c
12
u
14
+ 11u
13
+ ··· + 32u + 16
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
14
5y
13
+ ··· 12y + 1
c
2
y
14
2y
13
+ ··· 1404y + 16
c
5
, c
11
y
14
6y
13
+ ··· 29y + 1
c
6
, c
10
y
14
3y
13
+ ··· 200y + 16
c
8
, c
9
, c
12
y
14
3y
13
+ ··· 1952y + 256
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.302400 + 0.217496I
a = 0.605686 0.839543I
b = 0.502930 + 0.079531I
1.71371 + 2.93592I 6.31999 3.15013I
u = 1.302400 0.217496I
a = 0.605686 + 0.839543I
b = 0.502930 0.079531I
1.71371 2.93592I 6.31999 + 3.15013I
u = 1.34067
a = 0.155885
b = 0.489180
2.25467 4.48040
u = 1.36286 + 0.56983I
a = 0.345177 + 0.767196I
b = 0.813064 + 0.209153I
4.40804 3.15243I 3.06554 + 3.15957I
u = 1.36286 0.56983I
a = 0.345177 0.767196I
b = 0.813064 0.209153I
4.40804 + 3.15243I 3.06554 3.15957I
u = 0.173211 + 0.432516I
a = 1.27801 + 1.97823I
b = 0.137112 + 1.014640I
2.33351 + 1.82562I 14.2631 3.2385I
u = 0.173211 0.432516I
a = 1.27801 1.97823I
b = 0.137112 1.014640I
2.33351 1.82562I 14.2631 + 3.2385I
u = 0.38414 + 1.74730I
a = 0.156968 + 0.424100I
b = 0.68808 + 1.33157I
3.68844 + 7.96253I 13.0881 6.5287I
u = 0.38414 1.74730I
a = 0.156968 0.424100I
b = 0.68808 1.33157I
3.68844 7.96253I 13.0881 + 6.5287I
u = 1.00721 + 1.50515I
a = 0.297399 0.386252I
b = 1.67998 1.44350I
2.83399 0.18487I 71.9536 + 3.7001I
30
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00721 1.50515I
a = 0.297399 + 0.386252I
b = 1.67998 + 1.44350I
2.83399 + 0.18487I 71.9536 3.7001I
u = 1.50686 + 1.02119I
a = 0.344190 + 0.719748I
b = 1.38404 + 0.90864I
1.89333 9.70124I 6.29823 + 7.45288I
u = 1.50686 1.02119I
a = 0.344190 0.719748I
b = 1.38404 0.90864I
1.89333 + 9.70124I 6.29823 7.45288I
u = 0.103858
a = 12.3240
b = 1.41289
9.22310 8.50330
31
VII. I
u
7
= hb + u, u
2
+ a u + 2, u
3
2u
2
+ 3u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
11
=
u
2
+ u 2
u
a
12
=
1
u 1
a
7
=
u
u
2
+ 2u
a
5
=
u
2
2u + 2
u
2
u + 1
a
1
=
0
u 1
a
4
=
u
2
2u + 2
u
2
2u + 1
a
8
=
u 1
u
a
10
=
u
2
+ 2u 2
u
a
9
=
u
2
+ 2u 2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
14
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
8
, c
9
, c
11
u
3
+ u
2
1
c
2
, c
6
, c
10
u
3
2u
2
+ 3u 1
c
4
, c
7
, c
12
u
3
u
2
+ 1
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
11
, c
12
y
3
y
2
+ 2y 1
c
2
, c
6
, c
10
y
3
+ 2y
2
+ 5y 1
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.78492 + 1.30714I
a = 0.122561 0.744862I
b = 0.78492 1.30714I
1.98242 + 9.42707I 8.53741 10.26002I
u = 0.78492 1.30714I
a = 0.122561 + 0.744862I
b = 0.78492 + 1.30714I
1.98242 9.42707I 8.53741 + 10.26002I
u = 0.430160
a = 1.75488
b = 0.430160
2.61489 14.9250
35
VIII. I
u
8
= hb, a + u + 1, u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u 1
a
11
=
u 1
0
a
12
=
1
2u + 1
a
7
=
u
2u + 2
a
5
=
u + 1
u
a
1
=
0
u 1
a
4
=
u + 1
u + 1
a
8
=
1
u + 1
a
10
=
u 1
0
a
9
=
u 1
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
, c
9
, c
11
u
2
+ u 1
c
3
, c
5
(u 1)
2
c
4
, c
12
u
2
u 1
c
7
(u + 1)
2
c
10
u
2
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
8
, c
9
c
11
, c
12
y
2
3y + 1
c
3
, c
5
, c
7
(y 1)
2
c
10
y
2
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
2.63189 17.0000
u = 1.61803
a = 0.618034
b = 0
10.5276 17.0000
39
IX. I
u
9
= hb, a
2
a 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
11
=
a
0
a
12
=
0
a
a
7
=
0
1
a
5
=
a + 1
1
a
1
=
a
1
a
4
=
1
0
a
8
=
1
1
a
10
=
a
0
a
9
=
1
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
40
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u 1)
2
c
4
, c
7
(u + 1)
2
c
5
, c
8
, c
9
c
11
u
2
+ u 1
c
6
, c
10
u
2
c
12
u
2
u 1
41
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
(y 1)
2
c
5
, c
8
, c
9
c
11
, c
12
y
2
3y + 1
c
6
, c
10
y
2
42
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 0
2.63189 17.0000
u = 1.00000
a = 1.61803
b = 0
10.5276 17.0000
43
X. I
u
10
= hb + u, a + 1, u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u 1
a
11
=
1
u
a
12
=
0
1
a
7
=
0
u
a
5
=
u
1
a
1
=
u + 1
1
a
4
=
1
0
a
8
=
u
u
a
10
=
u 1
u
a
9
=
u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
44
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u 1)
2
c
2
, c
3
, c
5
c
8
, c
9
, c
10
u
2
+ u 1
c
4
(u + 1)
2
c
6
u
2
c
7
, c
12
u
2
u 1
45
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
11
(y 1)
2
c
2
, c
3
, c
5
c
7
, c
8
, c
9
c
10
, c
12
y
2
3y + 1
c
6
y
2
46
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 0.618034
2.63189 17.0000
u = 1.61803
a = 1.00000
b = 1.61803
10.5276 17.0000
47
XI. I
v
1
= ha, b + 1, v
2
v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
v
0
a
3
=
1
0
a
11
=
0
1
a
12
=
1
1
a
7
=
2v
v
a
5
=
v
v
a
1
=
v + 2
v 1
a
4
=
2v 1
v + 1
a
8
=
v 2
v + 1
a
10
=
1
1
a
9
=
v 1
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
48
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
u
2
+ u 1
c
2
u
2
c
4
, c
7
u
2
u 1
c
8
, c
9
, c
10
c
11
(u 1)
2
c
12
(u + 1)
2
49
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
y
2
3y + 1
c
2
y
2
c
8
, c
9
, c
10
c
11
, c
12
(y 1)
2
50
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.618034
a = 0
b = 1.00000
2.63189 17.0000
v = 1.61803
a = 0
b = 1.00000
10.5276 17.0000
51
XII. I
v
2
= ha, b v 1, v
2
+ v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
v
0
a
3
=
1
0
a
11
=
0
v + 1
a
12
=
v 1
v + 1
a
7
=
2v + 1
v 1
a
5
=
v
v 1
a
1
=
2
v 2
a
4
=
v 2
v + 2
a
8
=
2
v + 2
a
10
=
v 1
v + 1
a
9
=
v 3
2v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17
52
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
c
11
u
2
+ u 1
c
2
u
2
c
4
, c
7
u
2
u 1
c
5
, c
6
, c
8
c
9
(u 1)
2
c
12
(u + 1)
2
53
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
10
, c
11
y
2
3y + 1
c
2
y
2
c
5
, c
6
, c
8
c
9
, c
12
(y 1)
2
54
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.618034
a = 0
b = 1.61803
10.5276 17.0000
v = 1.61803
a = 0
b = 0.618034
2.63189 17.0000
55
XIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
8
, c
9
, c
11
(u 1)
4
(u
2
+ u 1)
3
(u
3
+ u
2
1)(u
5
+ 2u
4
4u
2
3u 1)
· ((u
14
3u
13
+ ··· + 4u 1)
2
)(u
14
2u
13
+ ··· + 3u + 1)
2
· (u
14
+ 11u
13
+ ··· + 32u + 16)
c
2
, c
6
, c
10
u
4
(u 1)
2
(u
2
+ u 1)
2
(u
3
2u
2
+ 3u 1)
· (u
5
3u
4
+ 4u
3
2u
2
+ 2u 1)(u
14
6u
13
+ ··· + 22u + 4)
· ((u
14
+ 2u
13
+ ··· 3u 1)
2
)(u
14
+ 7u
13
+ ··· + 8u + 4)
2
c
4
, c
7
, c
12
(u + 1)
4
(u
2
u 1)
3
(u
3
u
2
+ 1)(u
5
+ 2u
4
4u
2
3u 1)
· ((u
14
3u
13
+ ··· + 4u 1)
2
)(u
14
2u
13
+ ··· + 3u + 1)
2
· (u
14
+ 11u
13
+ ··· + 32u + 16)
56
XIV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
11
, c
12
(y 1)
4
(y
2
3y + 1)
3
(y
3
y
2
+ 2y 1)
· (y
5
4y
4
+ 10y
3
12y
2
+ y 1)(y
14
6y
13
+ ··· 29y + 1)
2
· ((y
14
5y
13
+ ··· 12y + 1)
2
)(y
14
3y
13
+ ··· 1952y + 256)
c
2
, c
6
, c
10
y
4
(y 1)
2
(y
2
3y + 1)
2
(y
3
+ 2y
2
+ 5y 1)(y
5
y
4
+ ··· + 6y
2
1)
· ((y
14
6y
13
+ ··· + 19y + 1)
2
)(y
14
3y
13
+ ··· 200y + 16)
2
· (y
14
2y
13
+ ··· 1404y + 16)
57