12n
0888
(K12n
0888
)
A knot diagram
1
Linearized knot diagam
6 7 11 12 10 2 12 1 5 6 4 8
Solving Sequence
1,6
2 7
3,10
11 4 5 9 8 12
c
1
c
6
c
2
c
10
c
3
c
5
c
9
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
3
+ 2b + 2u + 1, a 1, u
4
u
3
2u
2
+ 3u + 1i
I
u
2
= hu
3
a u
3
2u
2
+ 2b + a + 1, u
2
a + 2u
3
+ a
2
au + 3u
2
+ 2u 2, u
4
+ u
3
u + 1i
I
u
3
= h−9u
7
+ 18u
6
+ 4u
5
32u
4
+ 32u
3
7u
2
+ 14b 57u + 81,
9u
7
27u
6
4u
5
+ 36u
4
28u
3
+ 12u
2
+ 77a + 32u 111,
u
8
3u
7
+ 2u
6
+ 4u
5
8u
4
+ 5u
3
+ 6u
2
16u + 11i
I
u
4
= h2b u 1, 3a + u, u
2
3i
I
u
5
= h2b + a 1, a
2
3, u 1i
I
u
6
= hb 1, u
3
+ 2u
2
+ 2a u + 2, u
4
2u
3
+ u
2
2i
I
u
7
= h2b 3, a + 1, u
2
+ 2u + 1i
I
u
8
= h2b + 1, a + 2u + 3, u
2
+ 2u + 1i
I
u
9
= h−u
3
+ b + u + 2, u
3
+ a + 2, u
4
+ u
3
2u 1i
I
u
10
= h2u
3
+ u
2
+ b 2, a 1, u
4
+ u
3
2u 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hb + 1, a, u 1i
I
u
12
= ha + 1, u + 1i
I
v
1
= ha, b + 1, v + 1i
* 12 irreducible components of dim
C
= 0, with total 42 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−u
3
+ 2b + 2u + 1, a 1, u
4
u
3
2u
2
+ 3u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
3
+ 3u + 1
a
10
=
1
1
2
u
3
u
1
2
a
11
=
1
1
2
u
3
+ u
2
u
1
2
a
4
=
u
2
+ u + 1
1
2
u
3
+ u +
1
2
a
5
=
u
1
2
u
3
u
1
2
a
9
=
u
2
+ 1
u
a
8
=
u
2
+ u + 1
u
a
12
=
u
3
u
2
u + 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
20
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u
4
u
3
2u
2
+ 3u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
4
5y
3
+ 12y
2
13y + 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45873
a = 1.00000
b = 0.593286
18.4021 26.2080
u = 1.37348 + 0.70139I
a = 1.00000
b = 1.59149 + 1.11079I
2.06772 13.64080I 18.8720 + 7.2487I
u = 1.37348 0.70139I
a = 1.00000
b = 1.59149 1.11079I
2.06772 + 13.64080I 18.8720 7.2487I
u = 0.288231
a = 1.00000
b = 0.223742
0.491481 20.0480
6
II. I
u
2
=
hu
3
au
3
2u
2
+2b+a+1, u
2
a+2u
3
+a
2
au+3u
2
+2u2, u
4
+u
3
u+1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
3
+ 2u
2
u + 1
a
10
=
a
1
2
u
3
a +
1
2
u
3
+ ···
1
2
a
1
2
a
11
=
a
1
2
u
3
a +
1
2
u
3
+ ···
1
2
a
1
2
a
4
=
u
3
+ u
2
1
1
2
u
3
a
1
2
u
3
+
1
2
a u +
1
2
a
5
=
u
3
a + u
2
a u
3
2u
2
+ 2
1
2
u
3
a +
1
2
u
3
+ ···
1
2
a
1
2
a
9
=
u
3
u
2
2u
u
a
8
=
u
3
u
2
u
u
a
12
=
u
2
+ u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
+ 6u
2
+ 2u 18
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(u
4
+ u
3
u + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
8
3u
7
+ 2u
6
+ 4u
5
8u
4
+ 5u
3
+ 6u
2
16u + 11
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y
4
y
3
+ 4y
2
y + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
8
5y
7
+ 12y
6
6y
5
26y
4
+ 51y
3
+ 20y
2
124y + 121
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.566121 + 0.458821I
a = 1.69837 0.55270I
b = 1.27294 + 0.62687I
3.95056 1.45022I 16.5601 + 4.7237I
u = 0.566121 + 0.458821I
a = 1.02228 + 1.53102I
b = 0.206818 + 0.237188I
3.95056 1.45022I 16.5601 + 4.7237I
u = 0.566121 0.458821I
a = 1.69837 + 0.55270I
b = 1.27294 0.62687I
3.95056 + 1.45022I 16.5601 4.7237I
u = 0.566121 0.458821I
a = 1.02228 1.53102I
b = 0.206818 0.237188I
3.95056 + 1.45022I 16.5601 4.7237I
u = 1.066121 + 0.864054I
a = 0.424245 0.799184I
b = 0.903065 0.310360I
1.48316 + 6.78371I 15.4399 4.7237I
u = 1.066121 + 0.864054I
a = 1.100342 0.179134I
b = 1.46919 + 0.76918I
1.48316 + 6.78371I 15.4399 4.7237I
u = 1.066121 0.864054I
a = 0.424245 + 0.799184I
b = 0.903065 + 0.310360I
1.48316 6.78371I 15.4399 + 4.7237I
u = 1.066121 0.864054I
a = 1.100342 + 0.179134I
b = 1.46919 0.76918I
1.48316 6.78371I 15.4399 + 4.7237I
10
III. I
u
3
= h−9u
7
+ 18u
6
+ · · · + 14b + 81, 9u
7
27u
6
+ · · · + 77a 111, u
8
3u
7
+ · · · 16u + 11i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
0.116883u
7
+ 0.350649u
6
+ ··· 0.415584u + 1.44156
9
14
u
7
9
7
u
6
+ ··· +
57
14
u
81
14
a
11
=
0.116883u
7
+ 0.350649u
6
+ ··· 0.415584u + 1.44156
13
14
u
7
9
7
u
6
+ ··· +
75
14
u
81
14
a
4
=
0.0129870u
7
0.0389610u
6
+ ··· 0.0649351u + 0.506494
3
14
u
7
+
1
7
u
6
+ ···
13
14
u +
9
14
a
5
=
0.0129870u
7
0.0389610u
6
+ ··· 0.0649351u 0.493506
1
14
u
7
+
1
7
u
6
+ ··· +
3
14
u +
9
14
a
9
=
0.480519u
7
+ 0.870130u
6
+ ··· 2.74026u + 2.68831
4
7
u
7
8
7
u
6
+ ··· +
23
7
u
29
7
a
8
=
0.0909091u
7
0.272727u
6
+ ··· + 0.545455u 1.45455
4
7
u
7
8
7
u
6
+ ··· +
23
7
u
29
7
a
12
=
0.376623u
7
0.558442u
6
+ ··· + 2.25974u 1.74026
4
7
u
7
9
7
u
6
+ ··· + 5u
51
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
7
u
7
16
7
u
6
2
7
u
5
+
30
7
u
4
16
7
u
3
+
46
7
u
170
7
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
u
8
3u
7
+ 2u
6
+ 4u
5
8u
4
+ 5u
3
+ 6u
2
16u + 11
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(u
4
+ u
3
u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y
8
5y
7
+ 12y
6
6y
5
26y
4
+ 51y
3
+ 20y
2
124y + 121
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y
4
y
3
+ 4y
2
y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.238242 + 1.218598I
a = 0.518207 + 0.976187I
b = 0.903065 0.310360I
1.48316 + 6.78371I 15.4399 4.7237I
u = 0.238242 1.218598I
a = 0.518207 0.976187I
b = 0.903065 + 0.310360I
1.48316 6.78371I 15.4399 + 4.7237I
u = 1.215075 + 0.466358I
a = 0.532414 + 0.173262I
b = 1.27294 + 0.62687I
3.95056 1.45022I 16.5601 + 4.7237I
u = 1.215075 0.466358I
a = 0.532414 0.173262I
b = 1.27294 0.62687I
3.95056 + 1.45022I 16.5601 4.7237I
u = 1.281196 + 0.397697I
a = 0.301641 0.451752I
b = 0.206818 + 0.237188I
3.95056 1.45022I 16.5601 + 4.7237I
u = 1.281196 0.397697I
a = 0.301641 + 0.451752I
b = 0.206818 0.237188I
3.95056 + 1.45022I 16.5601 4.7237I
u = 1.32788 + 0.75978I
a = 0.885344 0.144133I
b = 1.46919 0.76918I
1.48316 6.78371I 15.4399 + 4.7237I
u = 1.32788 0.75978I
a = 0.885344 + 0.144133I
b = 1.46919 + 0.76918I
1.48316 + 6.78371I 15.4399 4.7237I
14
IV. I
u
4
= h2b u 1, 3a + u, u
2
3i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
3
a
7
=
u
2u
a
3
=
2
3
a
10
=
1
3
u
1
2
u +
1
2
a
11
=
1
3
u
1
2
u +
1
2
a
4
=
1
3
u 2
1
2
u
7
2
a
5
=
1
3
u
1
2
u
1
2
a
9
=
0
u
a
8
=
u
u
a
12
=
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
u
2
3
c
3
, c
4
, c
9
c
10
(u + 1)
2
c
5
, c
11
(u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 3)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.73205
a = 0.577350
b = 1.36603
16.4493 24.0000
u = 1.73205
a = 0.577350
b = 0.366025
16.4493 24.0000
18
V. I
u
5
= h2b + a 1, a
2
3, u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
1
a
2
=
1
1
a
7
=
1
0
a
3
=
0
1
a
10
=
a
1
2
a +
1
2
a
11
=
a
1
2
a +
1
2
a
4
=
3
1
2
a
1
2
a
5
=
3
1
2
a
1
2
a
9
=
2a
1
a
8
=
2a 1
1
a
12
=
2a
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(u 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
2
3
c
6
, c
12
(u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y 3)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.73205
b = 0.366025
16.4493 24.0000
u = 1.00000
a = 1.73205
b = 1.36603
16.4493 24.0000
22
VI. I
u
6
= hb 1, u
3
+ 2u
2
+ 2a u + 2, u
4
2u
3
+ u
2
2i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
2u
3
+ 3u
2
2
a
10
=
1
2
u
3
u
2
+
1
2
u 1
1
a
11
=
1
2
u
3
u
2
+
1
2
u 1
u
2
+ u + 1
a
4
=
1
2
u
3
2u
2
+
3
2
u 1
u
3
+ u
2
1
a
5
=
1
2
u
3
u
2
+
3
2
u 2
1
a
9
=
u
2
3u + 2
u
a
8
=
u
2
2u + 2
u
a
12
=
u
3
+ 2u
2
2u + 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u
4
2u
3
+ u
2
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
4
2y
3
3y
2
4y + 4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 1.078987I
a = 0.646447 0.762959I
b = 1.00000
4.11234 12.0000
u = 0.500000 1.078987I
a = 0.646447 + 0.762959I
b = 1.00000
4.11234 12.0000
u = 0.790044
a = 2.26575
b = 1.00000
15.6269 12.0000
u = 1.79004
a = 0.441355
b = 1.00000
15.6269 12.0000
26
VII. I
u
7
= h2b 3, a + 1, u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
2u 1
a
7
=
u
2u 2
a
3
=
2u + 2
1
a
10
=
1
1.5
a
11
=
1
2u +
5
2
a
4
=
u
5
2
u + 4
a
5
=
u
1
2
u
a
9
=
2u 2
u + 2
a
8
=
u
u + 2
a
12
=
0
2u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
11
(u + 1)
2
c
3
, c
4
, c
6
c
9
, c
10
, c
12
(u 1)
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.50000
6.57974 24.0000
u = 1.00000
a = 1.00000
b = 1.50000
6.57974 24.0000
30
VIII. I
u
8
= h2b + 1, a + 2u + 3, u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
2u 1
a
7
=
u
2u 2
a
3
=
2u + 2
1
a
10
=
2u 3
0.5
a
11
=
2u 3
1.5
a
4
=
u
3
2
u + 1
a
5
=
3u 4
1
2
u 1
a
9
=
2u + 2
u + 2
a
8
=
3u + 4
u + 2
a
12
=
4u 4
2u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
11
(u + 1)
2
c
3
, c
4
, c
6
c
9
, c
10
, c
12
(u 1)
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
2
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.500000
6.57974 24.0000
u = 1.00000
a = 1.00000
b = 0.500000
6.57974 24.0000
34
IX. I
u
9
= h−u
3
+ b + u + 2, u
3
+ a + 2, u
4
+ u
3
2u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
3
+ 2u
2
2u 1
a
10
=
u
3
2
u
3
u 2
a
11
=
u
3
2
2u
3
2u 3
a
4
=
u
3
u
2
+ 2
u
3
u + 1
a
5
=
2u
3
+ u
2
u 3
u
3
+ u
2
+ u 2
a
9
=
u
2
+ 1
u
3
+ 1
a
8
=
u
3
u
2
+ 2
u
3
+ 1
a
12
=
u
3
1
u
3
+ u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u
4
+ u
3
2u 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
4
y
3
+ 2y
2
4y + 1
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.15372
a = 0.464313
b = 1.61803
5.59278 14.0000
u = 0.809017 + 0.981593I
a = 0.190983 + 0.981593I
b = 0.618034
2.30291 14.0000
u = 0.809017 0.981593I
a = 0.190983 0.981593I
b = 0.618034
2.30291 14.0000
u = 0.535687
a = 2.15372
b = 1.61803
5.59278 14.0000
38
X. I
u
10
= h2u
3
+ u
2
+ b 2, a 1, u
4
+ u
3
2u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
3
+ 2u
2
2u 1
a
10
=
1
2u
3
u
2
+ 2
a
11
=
1
2u
3
+ 2
a
4
=
u
3
u
2
+ 2
u
3
+ 3
a
5
=
u
u
3
u 2
a
9
=
u
2
+ 1
u
3
+ 1
a
8
=
u
3
u
2
+ 2
u
3
+ 1
a
12
=
u
3
1
u
3
+ u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
u
4
+ u
3
2u 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
4
y
3
+ 2y
2
4y + 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.15372
a = 1.00000
b = 2.40245
5.59278 14.0000
u = 0.809017 + 0.981593I
a = 1.00000
b = 1.309017 0.374935I
2.30291 14.0000
u = 0.809017 0.981593I
a = 1.00000
b = 1.309017 + 0.374935I
2.30291 14.0000
u = 0.535687
a = 1.00000
b = 2.02048
5.59278 14.0000
42
XI. I
u
11
= hb + 1, a, u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
1
a
2
=
1
1
a
7
=
1
0
a
3
=
0
1
a
10
=
0
1
a
11
=
0
1
a
4
=
0
1
a
5
=
0
1
a
9
=
0
1
a
8
=
1
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
12
u + 1
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
46
XII. I
u
12
= ha + 1, u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
1
a
2
=
1
1
a
7
=
1
0
a
3
=
0
1
a
10
=
1
b
a
11
=
1
b 1
a
4
=
1
b
a
5
=
1
b 1
a
9
=
0
1
a
8
=
1
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
47
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
12
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
6.57974 24.0000
48
XIII. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
1
0
a
2
=
1
0
a
7
=
1
0
a
3
=
1
0
a
10
=
0
1
a
11
=
1
1
a
4
=
0
1
a
5
=
1
1
a
9
=
1
0
a
8
=
1
0
a
12
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
u
c
3
, c
4
, c
9
c
10
u + 1
c
5
, c
11
u 1
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y 1
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
52
XIV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
11
u(u 1)
3
(u + 1)
4
(u
2
3)(u
4
2u
3
+ u
2
2)(u
4
u
3
+ ··· + 3u + 1)
· (u
4
+ u
3
2u 1)
2
(u
4
+ u
3
u + 1)
2
· (u
8
3u
7
+ 2u
6
+ 4u
5
8u
4
+ 5u
3
+ 6u
2
16u + 11)
c
3
, c
4
, c
6
c
9
, c
10
, c
12
u(u 1)
4
(u + 1)
3
(u
2
3)(u
4
2u
3
+ u
2
2)(u
4
u
3
+ ··· + 3u + 1)
· (u
4
+ u
3
2u 1)
2
(u
4
+ u
3
u + 1)
2
· (u
8
3u
7
+ 2u
6
+ 4u
5
8u
4
+ 5u
3
+ 6u
2
16u + 11)
53
XV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y(y 3)
2
(y 1)
7
(y
4
5y
3
+ ··· 13y + 1)(y
4
2y
3
+ ··· 4y + 4)
· (y
4
y
3
+ 2y
2
4y + 1)
2
(y
4
y
3
+ 4y
2
y + 1)
2
· (y
8
5y
7
+ 12y
6
6y
5
26y
4
+ 51y
3
+ 20y
2
124y + 121)
54