11a
48
(K11a
48
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 4 10 3 6 11 7 9
Solving Sequence
1,5
2 3 4
6,9
8 7 11 10
c
1
c
2
c
4
c
5
c
8
c
7
c
11
c
9
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−14u
61
+ 23u
60
+ ··· + 4b 7, 9u
61
+ 37u
60
+ ··· + 4a + 12, u
62
4u
61
+ ··· + u + 1i
I
u
2
= h−au + b a, a
3
+ a
2
u 2au 2a + 1, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−14u
61
+ 23u
60
+ · · · + 4b 7, 9u
61
+ 37u
60
+ · · · + 4a + 12, u
62
4u
61
+ · · · + u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
6
=
u
3
u
5
+ u
3
+ u
a
9
=
9
4
u
61
37
4
u
60
+ ···
3
4
u 3
7
2
u
61
23
4
u
60
+ ··· +
13
2
u +
7
4
a
8
=
11
4
u
61
35
2
u
60
+ ···
49
4
u
35
4
13
2
u
61
47
4
u
60
+ ··· +
23
2
u +
11
4
a
7
=
13
4
u
61
23
2
u
60
+ ···
7
4
u
13
4
3
2
u
61
1
4
u
60
+ ··· +
13
2
u +
9
4
a
11
=
1
4
u
60
+
3
4
u
59
+ ··· +
5
2
u +
7
4
1
4
u
61
u
60
+ ···
5
4
u
1
4
a
10
=
11
4
u
61
+
47
4
u
60
+ ··· +
7
4
u + 1
3
4
u
61
1
4
u
60
+ ···
17
4
u
5
2
a
10
=
11
4
u
61
+
47
4
u
60
+ ··· +
7
4
u + 1
3
4
u
61
1
4
u
60
+ ···
17
4
u
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
61
+
1
2
u
60
+ ··· + u + 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
62
+ 4u
61
+ ··· u + 1
c
2
, c
5
u
62
+ 20u
61
+ ··· 17u + 1
c
3
, c
7
u
62
u
61
+ ··· + 224u 64
c
6
, c
10
u
62
3u
61
+ ··· + 2u 1
c
8
u
62
+ 3u
61
+ ··· 4452u 1201
c
9
, c
11
u
62
21u
61
+ ··· 16u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
62
+ 20y
61
+ ··· 17y + 1
c
2
, c
5
y
62
+ 48y
61
+ ··· 369y + 1
c
3
, c
7
y
62
35y
61
+ ··· 37888y + 4096
c
6
, c
10
y
62
21y
61
+ ··· 16y + 1
c
8
y
62
17y
61
+ ··· 41957136y + 1442401
c
9
, c
11
y
62
+ 43y
61
+ ··· 16y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.580047 + 0.850451I
a = 0.615466 0.047953I
b = 0.105015 + 0.107324I
0.46590 2.28716I 1.57514 + 4.44404I
u = 0.580047 0.850451I
a = 0.615466 + 0.047953I
b = 0.105015 0.107324I
0.46590 + 2.28716I 1.57514 4.44404I
u = 0.708480 + 0.748571I
a = 0.625956 0.954656I
b = 0.035473 + 0.874104I
0.06793 2.21961I 7.00000 + 3.72035I
u = 0.708480 0.748571I
a = 0.625956 + 0.954656I
b = 0.035473 0.874104I
0.06793 + 2.21961I 7.00000 3.72035I
u = 0.176329 + 0.912969I
a = 0.631715 + 0.212995I
b = 0.204630 + 0.113298I
1.47231 1.88154I 1.17198 + 4.94319I
u = 0.176329 0.912969I
a = 0.631715 0.212995I
b = 0.204630 0.113298I
1.47231 + 1.88154I 1.17198 4.94319I
u = 0.067320 + 0.925637I
a = 1.65632 + 1.56093I
b = 0.021019 + 1.209610I
5.17463 1.43170I 0.06499 + 2.83805I
u = 0.067320 0.925637I
a = 1.65632 1.56093I
b = 0.021019 1.209610I
5.17463 + 1.43170I 0.06499 2.83805I
u = 0.762893 + 0.779001I
a = 0.88438 + 1.40384I
b = 0.547272 1.284430I
0.86999 + 2.89738I 0
u = 0.762893 0.779001I
a = 0.88438 1.40384I
b = 0.547272 + 1.284430I
0.86999 2.89738I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.672440 + 0.859246I
a = 1.094710 + 0.307283I
b = 0.15697 + 1.45420I
1.87828 0.43024I 0
u = 0.672440 0.859246I
a = 1.094710 0.307283I
b = 0.15697 1.45420I
1.87828 + 0.43024I 0
u = 0.113095 + 0.896419I
a = 1.43284 1.95950I
b = 0.35266 1.38822I
4.68648 + 4.26236I 0.88079 2.61775I
u = 0.113095 0.896419I
a = 1.43284 + 1.95950I
b = 0.35266 + 1.38822I
4.68648 4.26236I 0.88079 + 2.61775I
u = 0.848922 + 0.694333I
a = 0.858355 + 0.429131I
b = 0.287596 1.039470I
3.14061 3.35098I 0
u = 0.848922 0.694333I
a = 0.858355 0.429131I
b = 0.287596 + 1.039470I
3.14061 + 3.35098I 0
u = 0.288556 + 1.063810I
a = 0.278572 + 0.779132I
b = 0.996600 + 0.151978I
1.97217 3.44390I 0
u = 0.288556 1.063810I
a = 0.278572 0.779132I
b = 0.996600 0.151978I
1.97217 + 3.44390I 0
u = 0.172015 + 1.093990I
a = 1.05796 1.37125I
b = 0.117190 1.069160I
3.80732 3.28559I 0
u = 0.172015 1.093990I
a = 1.05796 + 1.37125I
b = 0.117190 + 1.069160I
3.80732 + 3.28559I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.872766 + 0.690242I
a = 0.873901 0.662198I
b = 0.58873 + 1.46893I
4.38951 9.08805I 0
u = 0.872766 0.690242I
a = 0.873901 + 0.662198I
b = 0.58873 1.46893I
4.38951 + 9.08805I 0
u = 0.673310 + 0.886698I
a = 0.848443 0.513970I
b = 0.08966 1.42530I
1.96729 + 5.63314I 0
u = 0.673310 0.886698I
a = 0.848443 + 0.513970I
b = 0.08966 + 1.42530I
1.96729 5.63314I 0
u = 0.811900 + 0.775479I
a = 1.206090 0.072648I
b = 0.416947 + 0.445355I
4.85281 0.38708I 0
u = 0.811900 0.775479I
a = 1.206090 + 0.072648I
b = 0.416947 0.445355I
4.85281 + 0.38708I 0
u = 0.193615 + 1.121270I
a = 0.76073 + 1.80584I
b = 0.50338 + 1.40284I
2.88060 8.87825I 0
u = 0.193615 1.121270I
a = 0.76073 1.80584I
b = 0.50338 1.40284I
2.88060 + 8.87825I 0
u = 0.491392 + 1.033550I
a = 0.487519 + 1.001310I
b = 0.126717 + 1.022770I
1.94981 3.50251I 0
u = 0.491392 1.033550I
a = 0.487519 1.001310I
b = 0.126717 1.022770I
1.94981 + 3.50251I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.740943 + 0.874063I
a = 1.87255 + 0.82263I
b = 1.074740 + 0.047853I
4.66247 2.81474I 0
u = 0.740943 0.874063I
a = 1.87255 0.82263I
b = 1.074740 0.047853I
4.66247 + 2.81474I 0
u = 0.866327 + 0.751351I
a = 1.39239 0.33135I
b = 1.227950 + 0.228420I
9.59400 2.64881I 0
u = 0.866327 0.751351I
a = 1.39239 + 0.33135I
b = 1.227950 0.228420I
9.59400 + 2.64881I 0
u = 0.446047 + 1.065130I
a = 0.990242 0.647003I
b = 0.466356 1.245930I
1.36538 + 1.65817I 0
u = 0.446047 1.065130I
a = 0.990242 + 0.647003I
b = 0.466356 + 1.245930I
1.36538 1.65817I 0
u = 0.838512 + 0.820293I
a = 1.45343 + 0.32563I
b = 0.784520 1.117280I
6.92919 + 4.19000I 0
u = 0.838512 0.820293I
a = 1.45343 0.32563I
b = 0.784520 + 1.117280I
6.92919 4.19000I 0
u = 0.696514 + 0.949067I
a = 2.10523 + 0.43360I
b = 0.084369 0.956151I
0.66167 3.18112I 0
u = 0.696514 0.949067I
a = 2.10523 0.43360I
b = 0.084369 + 0.956151I
0.66167 + 3.18112I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.728645 + 0.950887I
a = 2.59637 0.18053I
b = 0.54347 + 1.35036I
0.34590 8.55449I 0
u = 0.728645 0.950887I
a = 2.59637 + 0.18053I
b = 0.54347 1.35036I
0.34590 + 8.55449I 0
u = 0.760261 + 0.159745I
a = 0.938749 0.389340I
b = 0.56323 + 1.31677I
1.40736 5.86221I 11.56645 + 5.83230I
u = 0.760261 0.159745I
a = 0.938749 + 0.389340I
b = 0.56323 1.31677I
1.40736 + 5.86221I 11.56645 5.83230I
u = 0.752971 + 0.970116I
a = 0.630063 + 0.503155I
b = 0.456679 0.367835I
4.25170 + 6.26267I 0
u = 0.752971 0.970116I
a = 0.630063 0.503155I
b = 0.456679 + 0.367835I
4.25170 6.26267I 0
u = 0.789356 + 0.948317I
a = 0.026334 1.083390I
b = 0.815193 + 1.043280I
6.52873 + 1.87763I 0
u = 0.789356 0.948317I
a = 0.026334 + 1.083390I
b = 0.815193 1.043280I
6.52873 1.87763I 0
u = 0.744263
a = 1.16786
b = 1.09986
5.44766 16.7720
u = 0.741510 + 1.026060I
a = 2.01086 + 0.29598I
b = 0.288482 + 1.092220I
2.12433 + 9.28782I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.741510 1.026060I
a = 2.01086 0.29598I
b = 0.288482 1.092220I
2.12433 9.28782I 0
u = 0.774379 + 1.004960I
a = 1.35473 1.13843I
b = 1.218840 0.287269I
8.80808 + 8.74834I 0
u = 0.774379 1.004960I
a = 1.35473 + 1.13843I
b = 1.218840 + 0.287269I
8.80808 8.74834I 0
u = 0.749728 + 1.037360I
a = 2.34145 0.53630I
b = 0.56778 1.49568I
3.3199 + 15.1181I 0
u = 0.749728 1.037360I
a = 2.34145 + 0.53630I
b = 0.56778 + 1.49568I
3.3199 15.1181I 0
u = 0.675568 + 0.188318I
a = 0.786334 + 0.175025I
b = 0.053146 0.874363I
0.358267 0.639742I 9.73626 + 0.89260I
u = 0.675568 0.188318I
a = 0.786334 0.175025I
b = 0.053146 + 0.874363I
0.358267 + 0.639742I 9.73626 0.89260I
u = 0.017068 + 0.625651I
a = 0.059805 1.358870I
b = 0.665979 0.287190I
0.589690 + 0.350421I 8.57728 0.80469I
u = 0.017068 0.625651I
a = 0.059805 + 1.358870I
b = 0.665979 + 0.287190I
0.589690 0.350421I 8.57728 + 0.80469I
u = 0.361194 + 0.064869I
a = 0.06161 2.33790I
b = 0.267132 + 1.196310I
2.33982 2.66219I 4.81398 + 3.49490I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.361194 0.064869I
a = 0.06161 + 2.33790I
b = 0.267132 1.196310I
2.33982 + 2.66219I 4.81398 3.49490I
u = 0.246452
a = 1.59617
b = 0.280872
0.790964 12.7580
11
II. I
u
2
= h−au + b a, a
3
+ a
2
u 2au 2a + 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
4
=
u
u + 1
a
6
=
1
0
a
9
=
a
au + a
a
8
=
au
au + a
a
7
=
au
au + a
a
11
=
a
2
u + a
2
+ 1
a
2
u
a
10
=
a
2
u + a
2
+ au u
a
2
u au a + 1
a
10
=
a
2
u + a
2
+ au u
a
2
u au a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6a
2
u + a
2
4au 5a + u + 14
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
7
u
6
c
4
(u
2
u + 1)
3
c
6
(u
3
u
2
+ 1)
2
c
8
, c
11
(u
3
u
2
+ 2u 1)
2
c
9
(u
3
+ u
2
+ 2u + 1)
2
c
10
(u
3
+ u
2
1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
7
y
6
c
6
, c
10
(y
3
y
2
+ 2y 1)
2
c
8
, c
9
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.024480 0.839835I
b = 0.215080 1.307140I
3.02413 4.85801I 4.03424 + 5.28153I
u = 0.500000 + 0.866025I
a = 1.239560 + 0.467306I
b = 0.215080 + 1.307140I
3.02413 + 0.79824I 2.74410 0.29766I
u = 0.500000 + 0.866025I
a = 0.284920 0.493496I
b = 0.569840
1.11345 2.02988I 12.72167 + 1.07831I
u = 0.500000 0.866025I
a = 1.024480 + 0.839835I
b = 0.215080 + 1.307140I
3.02413 + 4.85801I 4.03424 5.28153I
u = 0.500000 0.866025I
a = 1.239560 0.467306I
b = 0.215080 1.307140I
3.02413 0.79824I 2.74410 + 0.29766I
u = 0.500000 0.866025I
a = 0.284920 + 0.493496I
b = 0.569840
1.11345 + 2.02988I 12.72167 1.07831I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
62
+ 4u
61
+ ··· u + 1)
c
2
, c
5
((u
2
+ u + 1)
3
)(u
62
+ 20u
61
+ ··· 17u + 1)
c
3
, c
7
u
6
(u
62
u
61
+ ··· + 224u 64)
c
4
((u
2
u + 1)
3
)(u
62
+ 4u
61
+ ··· u + 1)
c
6
((u
3
u
2
+ 1)
2
)(u
62
3u
61
+ ··· + 2u 1)
c
8
((u
3
u
2
+ 2u 1)
2
)(u
62
+ 3u
61
+ ··· 4452u 1201)
c
9
((u
3
+ u
2
+ 2u + 1)
2
)(u
62
21u
61
+ ··· 16u + 1)
c
10
((u
3
+ u
2
1)
2
)(u
62
3u
61
+ ··· + 2u 1)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
62
21u
61
+ ··· 16u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
62
+ 20y
61
+ ··· 17y + 1)
c
2
, c
5
((y
2
+ y + 1)
3
)(y
62
+ 48y
61
+ ··· 369y + 1)
c
3
, c
7
y
6
(y
62
35y
61
+ ··· 37888y + 4096)
c
6
, c
10
((y
3
y
2
+ 2y 1)
2
)(y
62
21y
61
+ ··· 16y + 1)
c
8
((y
3
+ 3y
2
+ 2y 1)
2
)(y
62
17y
61
+ ··· 4.19571 × 10
7
y + 1442401)
c
9
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
62
+ 43y
61
+ ··· 16y + 1)
17