11a
55
(K11a
55
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 10 11 9 3 5 6 7
Solving Sequence
6,10
11 7
1,2
3 5 4 9 8
c
10
c
6
c
11
c
2
c
5
c
4
c
9
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
36
23u
34
+ ··· + b 1, u
36
+ u
35
+ ··· + a 2, u
37
2u
36
+ ··· + u + 1i
I
u
2
= hb, a u 1, u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
36
23u
34
+· · ·+b1, u
36
+u
35
+· · ·+a2, u
37
2u
36
+· · ·+u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
u
36
u
35
+ ··· 7u + 2
u
36
+ 23u
34
+ ··· 7u
2
+ 1
a
3
=
2u
36
u
35
+ ··· 7u + 1
2u
36
+ 46u
34
+ ··· + u + 2
a
5
=
u
u
a
4
=
u
35
u
34
+ ··· + 6u 2
u
26
+ 16u
24
+ ··· 5u
2
+ 2u
a
9
=
u
2
+ 1
u
2
a
8
=
u
7
+ 4u
5
4u
3
+ 2u
u
7
3u
5
+ u
a
8
=
u
7
+ 4u
5
4u
3
+ 2u
u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
36
+ 11u
35
+ ··· + 32u + 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
37
3u
36
+ ··· 2u + 1
c
2
u
37
+ 19u
36
+ ··· + 4u + 1
c
3
, c
8
u
37
u
36
+ ··· + 3u
2
+ 4
c
5
, c
6
, c
9
c
10
, c
11
u
37
2u
36
+ ··· + u + 1
c
7
u
37
15u
36
+ ··· 24u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
37
19y
36
+ ··· + 4y 1
c
2
y
37
+ y
36
+ ··· 44y 1
c
3
, c
8
y
37
+ 15y
36
+ ··· 24y 16
c
5
, c
6
, c
9
c
10
, c
11
y
37
48y
36
+ ··· + 25y 1
c
7
y
37
+ 11y
36
+ ··· + 7712y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.957621 + 0.312318I
a = 0.073185 0.193326I
b = 0.598010 + 0.868889I
3.73036 4.62550I 7.76738 + 4.90690I
u = 0.957621 0.312318I
a = 0.073185 + 0.193326I
b = 0.598010 0.868889I
3.73036 + 4.62550I 7.76738 4.90690I
u = 0.949350 + 0.385280I
a = 0.633743 + 1.188910I
b = 0.19879 2.12627I
1.18638 9.75247I 4.12651 + 8.53256I
u = 0.949350 0.385280I
a = 0.633743 1.188910I
b = 0.19879 + 2.12627I
1.18638 + 9.75247I 4.12651 8.53256I
u = 0.883228 + 0.295441I
a = 0.51817 1.46272I
b = 0.41139 + 2.28971I
0.53133 + 3.88210I 2.57643 5.18911I
u = 0.883228 0.295441I
a = 0.51817 + 1.46272I
b = 0.41139 2.28971I
0.53133 3.88210I 2.57643 + 5.18911I
u = 1.092520 + 0.081336I
a = 0.138007 + 0.822702I
b = 0.51460 1.46532I
6.20655 2.48097I 9.67939 + 3.72325I
u = 1.092520 0.081336I
a = 0.138007 0.822702I
b = 0.51460 + 1.46532I
6.20655 + 2.48097I 9.67939 3.72325I
u = 0.821917 + 0.258796I
a = 1.54271 0.10934I
b = 0.128202 + 0.262204I
1.03449 1.41041I 2.89217 + 4.96755I
u = 0.821917 0.258796I
a = 1.54271 + 0.10934I
b = 0.128202 0.262204I
1.03449 + 1.41041I 2.89217 4.96755I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.819155 + 0.099014I
a = 0.507337 + 0.293800I
b = 0.977537 0.679950I
1.50853 + 0.14938I 6.45155 + 0.46456I
u = 0.819155 0.099014I
a = 0.507337 0.293800I
b = 0.977537 + 0.679950I
1.50853 0.14938I 6.45155 0.46456I
u = 0.669935 + 0.434127I
a = 1.373890 + 0.079928I
b = 0.053060 0.300111I
0.46634 2.82395I 2.81248 + 2.07751I
u = 0.669935 0.434127I
a = 1.373890 0.079928I
b = 0.053060 + 0.300111I
0.46634 + 2.82395I 2.81248 2.07751I
u = 0.126557 + 0.616394I
a = 0.649911 0.790815I
b = 0.194995 1.112060I
2.10926 + 6.36685I 0.76306 6.73734I
u = 0.126557 0.616394I
a = 0.649911 + 0.790815I
b = 0.194995 + 1.112060I
2.10926 6.36685I 0.76306 + 6.73734I
u = 0.446224 + 0.376427I
a = 0.324362 0.529872I
b = 0.123832 0.626016I
1.20413 + 1.03970I 6.27276 4.95197I
u = 0.446224 0.376427I
a = 0.324362 + 0.529872I
b = 0.123832 + 0.626016I
1.20413 1.03970I 6.27276 + 4.95197I
u = 0.164699 + 0.507419I
a = 1.129790 0.016387I
b = 0.171879 0.083354I
0.29596 + 1.82108I 2.47769 3.83748I
u = 0.164699 0.507419I
a = 1.129790 + 0.016387I
b = 0.171879 + 0.083354I
0.29596 1.82108I 2.47769 + 3.83748I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.041396 + 0.496138I
a = 0.92411 + 1.21544I
b = 0.418405 + 1.058430I
3.33947 1.17576I 4.43128 + 1.03066I
u = 0.041396 0.496138I
a = 0.92411 1.21544I
b = 0.418405 1.058430I
3.33947 + 1.17576I 4.43128 1.03066I
u = 1.59215 + 0.06066I
a = 0.579041 0.150932I
b = 0.047557 + 0.344022I
7.10974 + 1.19498I 0
u = 1.59215 0.06066I
a = 0.579041 + 0.150932I
b = 0.047557 0.344022I
7.10974 1.19498I 0
u = 1.67626 + 0.05941I
a = 0.503100 + 0.060196I
b = 0.271772 0.167857I
7.80383 + 2.56815I 0
u = 1.67626 0.05941I
a = 0.503100 0.060196I
b = 0.271772 + 0.167857I
7.80383 2.56815I 0
u = 1.68061 + 0.03427I
a = 1.41650 + 1.55888I
b = 1.66994 1.91855I
10.43060 0.72718I 0
u = 1.68061 0.03427I
a = 1.41650 1.55888I
b = 1.66994 + 1.91855I
10.43060 + 0.72718I 0
u = 1.68650 + 0.07280I
a = 0.09784 3.23140I
b = 0.52086 + 3.57531I
8.52780 5.28278I 0
u = 1.68650 0.07280I
a = 0.09784 + 3.23140I
b = 0.52086 3.57531I
8.52780 + 5.28278I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70104 + 0.10270I
a = 0.45064 + 2.76832I
b = 0.21974 3.16301I
10.4876 + 11.6846I 0
u = 1.70104 0.10270I
a = 0.45064 2.76832I
b = 0.21974 + 3.16301I
10.4876 11.6846I 0
u = 1.70490 + 0.08169I
a = 0.92941 1.36566I
b = 1.13242 + 1.88410I
13.1327 + 6.1887I 0
u = 1.70490 0.08169I
a = 0.92941 + 1.36566I
b = 1.13242 1.88410I
13.1327 6.1887I 0
u = 1.73093 + 0.01518I
a = 0.67256 + 2.24479I
b = 1.13578 2.69126I
16.2880 + 2.8364I 0
u = 1.73093 0.01518I
a = 0.67256 2.24479I
b = 1.13578 + 2.69126I
16.2880 2.8364I 0
u = 0.201734
a = 3.92958
b = 0.509239
1.30402 9.26700
8
II. I
u
2
= hb, a u 1, u
2
+ u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
7
=
u
u + 1
a
1
=
u
u
a
2
=
u + 1
0
a
3
=
1
u
a
5
=
u
u
a
4
=
1
u
a
9
=
u
u + 1
a
8
=
u
u + 1
a
8
=
u
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
4
(u + 1)
2
c
3
, c
7
, c
8
u
2
c
5
, c
6
u
2
u 1
c
9
, c
10
, c
11
u
2
+ u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
7
, c
8
y
2
c
5
, c
6
, c
9
c
10
, c
11
y
2
3y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
0.657974 5.00000
u = 1.61803
a = 0.618034
b = 0
7.23771 5.00000
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
37
3u
36
+ ··· 2u + 1)
c
2
((u + 1)
2
)(u
37
+ 19u
36
+ ··· + 4u + 1)
c
3
, c
8
u
2
(u
37
u
36
+ ··· + 3u
2
+ 4)
c
4
((u + 1)
2
)(u
37
3u
36
+ ··· 2u + 1)
c
5
, c
6
(u
2
u 1)(u
37
2u
36
+ ··· + u + 1)
c
7
u
2
(u
37
15u
36
+ ··· 24u + 16)
c
9
, c
10
, c
11
(u
2
+ u 1)(u
37
2u
36
+ ··· + u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
2
)(y
37
19y
36
+ ··· + 4y 1)
c
2
((y 1)
2
)(y
37
+ y
36
+ ··· 44y 1)
c
3
, c
8
y
2
(y
37
+ 15y
36
+ ··· 24y 16)
c
5
, c
6
, c
9
c
10
, c
11
(y
2
3y + 1)(y
37
48y
36
+ ··· + 25y 1)
c
7
y
2
(y
37
+ 11y
36
+ ··· + 7712y 256)
14