11a
56
(K11a
56
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 10 9 3 5 6 7
Solving Sequence
5,11
6 10 7
1,3
2 4 9 8
c
5
c
10
c
6
c
11
c
2
c
4
c
9
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
54
u
53
+ ··· + b + 1, u
56
+ 2u
55
+ ··· + a 4, u
57
2u
56
+ ··· + 3u 1i
I
u
2
= hb + 1, u
2
+ a u 2, u
3
+ u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
54
u
53
+· · ·+b+1, u
56
+2u
55
+· · ·+a4, u
57
2u
56
+· · ·+3u1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
3
=
u
56
2u
55
+ ··· + 2u + 4
u
54
+ u
53
+ ··· u 1
a
2
=
u
56
2u
55
+ ··· + 3u + 3
u
54
+ u
53
+ ··· u 1
a
4
=
u
56
2u
55
+ ··· + 4u + 3
u
54
+ u
53
+ ··· + 2u
2
1
a
9
=
u
3
2u
u
3
+ u
a
8
=
u
10
5u
8
8u
6
3u
4
+ 3u
2
+ 1
u
10
+ 4u
8
+ 5u
6
3u
2
a
8
=
u
10
5u
8
8u
6
3u
4
+ 3u
2
+ 1
u
10
+ 4u
8
+ 5u
6
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
56
+ 2u
55
+ ··· 8u 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
57
4u
56
+ ··· 4u + 1
c
2
u
57
+ 30u
56
+ ··· + 4u + 1
c
3
, c
8
u
57
u
56
+ ··· + 4u + 8
c
5
, c
6
, c
10
u
57
+ 2u
56
+ ··· + 3u + 1
c
7
u
57
21u
56
+ ··· 496u + 64
c
9
, c
11
u
57
2u
56
+ ··· 3u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
57
30y
56
+ ··· + 4y 1
c
2
y
57
2y
56
+ ··· 24y 1
c
3
, c
8
y
57
+ 21y
56
+ ··· 496y 64
c
5
, c
6
, c
10
y
57
+ 48y
56
+ ··· + 23y 1
c
7
y
57
+ 25y
56
+ ··· + 134400y 4096
c
9
, c
11
y
57
32y
56
+ ··· + 1719y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.339361 + 1.049480I
a = 0.50854 1.48654I
b = 1.48903 + 0.96739I
1.26618 6.23330I 0
u = 0.339361 1.049480I
a = 0.50854 + 1.48654I
b = 1.48903 0.96739I
1.26618 + 6.23330I 0
u = 0.245002 + 1.131380I
a = 0.32304 1.42186I
b = 0.208942 + 0.592370I
3.18295 + 0.59460I 0
u = 0.245002 1.131380I
a = 0.32304 + 1.42186I
b = 0.208942 0.592370I
3.18295 0.59460I 0
u = 0.317804 + 1.113660I
a = 0.301756 + 1.180030I
b = 1.38215 0.87035I
1.12994 1.12326I 0
u = 0.317804 1.113660I
a = 0.301756 1.180030I
b = 1.38215 + 0.87035I
1.12994 + 1.12326I 0
u = 0.799224 + 0.161136I
a = 3.09156 + 0.85984I
b = 1.72076 1.24432I
1.44780 + 10.42440I 2.90383 7.96893I
u = 0.799224 0.161136I
a = 3.09156 0.85984I
b = 1.72076 + 1.24432I
1.44780 10.42440I 2.90383 + 7.96893I
u = 0.806026 + 0.024229I
a = 0.524270 0.510392I
b = 0.297226 + 0.891673I
7.00743 + 2.64990I 8.23772 3.33458I
u = 0.806026 0.024229I
a = 0.524270 + 0.510392I
b = 0.297226 0.891673I
7.00743 2.64990I 8.23772 + 3.33458I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.787966 + 0.130536I
a = 2.57577 0.95104I
b = 1.42239 + 1.23954I
4.10218 + 5.18574I 6.42318 4.39381I
u = 0.787966 0.130536I
a = 2.57577 + 0.95104I
b = 1.42239 1.23954I
4.10218 5.18574I 6.42318 + 4.39381I
u = 0.226143 + 1.198470I
a = 0.29741 1.54674I
b = 1.71216 + 1.04442I
3.91254 + 1.67555I 0
u = 0.226143 1.198470I
a = 0.29741 + 1.54674I
b = 1.71216 1.04442I
3.91254 1.67555I 0
u = 0.754570 + 0.135098I
a = 1.92141 + 1.62306I
b = 0.580662 0.892200I
0.25463 4.33211I 1.62345 + 4.63416I
u = 0.754570 0.135098I
a = 1.92141 1.62306I
b = 0.580662 + 0.892200I
0.25463 + 4.33211I 1.62345 4.63416I
u = 0.338013 + 0.681571I
a = 0.642106 0.604854I
b = 0.849512 + 0.966860I
2.04198 6.13465I 0.96110 + 7.52026I
u = 0.338013 0.681571I
a = 0.642106 + 0.604854I
b = 0.849512 0.966860I
2.04198 + 6.13465I 0.96110 7.52026I
u = 0.722838 + 0.126778I
a = 2.54617 + 1.95088I
b = 1.31528 1.75485I
0.80005 + 1.75324I 2.03009 4.15615I
u = 0.722838 0.126778I
a = 2.54617 1.95088I
b = 1.31528 + 1.75485I
0.80005 1.75324I 2.03009 + 4.15615I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.275696 + 1.237520I
a = 0.808387 + 0.975749I
b = 0.556151 0.097923I
1.78635 3.24178I 0
u = 0.275696 1.237520I
a = 0.808387 0.975749I
b = 0.556151 + 0.097923I
1.78635 + 3.24178I 0
u = 0.353003 + 1.235470I
a = 0.259194 + 0.074469I
b = 0.608563 0.823394I
3.27082 + 1.52614I 0
u = 0.353003 1.235470I
a = 0.259194 0.074469I
b = 0.608563 + 0.823394I
3.27082 1.52614I 0
u = 0.664926 + 0.248231I
a = 0.53582 + 1.91639I
b = 0.321007 0.845457I
0.56153 + 2.51315I 1.83697 2.48665I
u = 0.664926 0.248231I
a = 0.53582 1.91639I
b = 0.321007 + 0.845457I
0.56153 2.51315I 1.83697 + 2.48665I
u = 0.704230 + 0.061019I
a = 1.64700 0.65736I
b = 0.525612 + 0.326561I
1.82968 0.29846I 5.16983 0.57329I
u = 0.704230 0.061019I
a = 1.64700 + 0.65736I
b = 0.525612 0.326561I
1.82968 + 0.29846I 5.16983 + 0.57329I
u = 0.355735 + 1.276270I
a = 0.681670 + 0.406147I
b = 0.007104 + 0.903876I
2.96572 + 6.83199I 0
u = 0.355735 1.276270I
a = 0.681670 0.406147I
b = 0.007104 0.903876I
2.96572 6.83199I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.294328 + 1.319490I
a = 1.338980 + 0.220264I
b = 0.580535 + 0.617472I
2.52174 3.91370I 0
u = 0.294328 1.319490I
a = 1.338980 0.220264I
b = 0.580535 0.617472I
2.52174 + 3.91370I 0
u = 0.181659 + 1.350590I
a = 0.400207 0.673731I
b = 0.475022 + 0.135856I
3.91953 3.45367I 0
u = 0.181659 1.350590I
a = 0.400207 + 0.673731I
b = 0.475022 0.135856I
3.91953 + 3.45367I 0
u = 0.308057 + 1.342450I
a = 2.07004 0.68307I
b = 1.21623 2.16373I
5.43045 + 5.50488I 0
u = 0.308057 1.342450I
a = 2.07004 + 0.68307I
b = 1.21623 + 2.16373I
5.43045 5.50488I 0
u = 0.040540 + 1.380290I
a = 0.437295 0.786403I
b = 0.388863 1.268110I
5.57754 2.56020I 0
u = 0.040540 1.380290I
a = 0.437295 + 0.786403I
b = 0.388863 + 1.268110I
5.57754 + 2.56020I 0
u = 0.321142 + 1.347280I
a = 1.81984 0.00606I
b = 0.797242 1.062560I
4.92507 8.23091I 0
u = 0.321142 1.347280I
a = 1.81984 + 0.00606I
b = 0.797242 + 1.062560I
4.92507 + 8.23091I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.010128 + 1.388520I
a = 0.665649 + 0.739671I
b = 0.02872 + 1.83602I
9.28405 + 1.35733I 0
u = 0.010128 1.388520I
a = 0.665649 0.739671I
b = 0.02872 1.83602I
9.28405 1.35733I 0
u = 0.337618 + 1.347450I
a = 1.76632 + 1.05829I
b = 1.40418 + 1.48266I
0.55115 + 9.25140I 0
u = 0.337618 1.347450I
a = 1.76632 1.05829I
b = 1.40418 1.48266I
0.55115 9.25140I 0
u = 0.086152 + 0.593036I
a = 0.86026 1.12969I
b = 0.349711 + 1.132030I
3.25990 + 1.13842I 4.67839 1.12304I
u = 0.086152 0.593036I
a = 0.86026 + 1.12969I
b = 0.349711 1.132030I
3.25990 1.13842I 4.67839 + 1.12304I
u = 0.268783 + 1.376140I
a = 1.251340 + 0.579944I
b = 0.053457 1.081820I
5.67983 0.88312I 0
u = 0.268783 1.376140I
a = 1.251340 0.579944I
b = 0.053457 + 1.081820I
5.67983 + 0.88312I 0
u = 0.340495 + 1.364500I
a = 1.93564 1.27843I
b = 1.80297 1.45511I
3.3664 + 14.5406I 0
u = 0.340495 1.364500I
a = 1.93564 + 1.27843I
b = 1.80297 + 1.45511I
3.3664 14.5406I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.279491 + 0.522898I
a = 0.1114230 + 0.0411162I
b = 0.664100 0.647028I
0.29336 1.71892I 2.35747 + 4.28522I
u = 0.279491 0.522898I
a = 0.1114230 0.0411162I
b = 0.664100 + 0.647028I
0.29336 + 1.71892I 2.35747 4.28522I
u = 0.04491 + 1.42071I
a = 0.362172 + 0.648626I
b = 0.88717 + 1.55692I
8.60971 7.06322I 0
u = 0.04491 1.42071I
a = 0.362172 0.648626I
b = 0.88717 1.55692I
8.60971 + 7.06322I 0
u = 0.475182 + 0.281427I
a = 0.033922 1.111620I
b = 0.503597 + 0.110254I
1.12264 1.10520I 5.95384 + 5.07623I
u = 0.475182 0.281427I
a = 0.033922 + 1.111620I
b = 0.503597 0.110254I
1.12264 + 1.10520I 5.95384 5.07623I
u = 0.195845
a = 3.55820
b = 0.749956
1.30246 9.05740
10
II. I
u
2
= hb + 1, u
2
+ a u 2, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
10
=
u
u
2
u 1
a
7
=
u
2
+ 1
u
2
u 1
a
1
=
1
0
a
3
=
u
2
+ u + 2
1
a
2
=
u
2
+ u + 1
1
a
4
=
u
2
+ u + 2
1
a
9
=
u
2
+ 1
u
2
u 1
a
8
=
u
2
+ 1
u
2
u 1
a
8
=
u
2
+ 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
+ 4u + 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
c
2
, c
4
(u + 1)
3
c
3
, c
7
, c
8
u
3
c
5
, c
6
u
3
+ u
2
+ 2u + 1
c
9
, c
11
u
3
+ u
2
1
c
10
u
3
u
2
+ 2u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
, c
8
y
3
c
5
, c
6
, c
10
y
3
+ 3y
2
+ 2y 1
c
9
, c
11
y
3
y
2
+ 2y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 1.00000
4.66906 2.82812I 5.17211 + 2.41717I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 1.00000
4.66906 + 2.82812I 5.17211 2.41717I
u = 0.569840
a = 1.75488
b = 1.00000
0.531480 3.34420
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
57
4u
56
+ ··· 4u + 1)
c
2
((u + 1)
3
)(u
57
+ 30u
56
+ ··· + 4u + 1)
c
3
, c
8
u
3
(u
57
u
56
+ ··· + 4u + 8)
c
4
((u + 1)
3
)(u
57
4u
56
+ ··· 4u + 1)
c
5
, c
6
(u
3
+ u
2
+ 2u + 1)(u
57
+ 2u
56
+ ··· + 3u + 1)
c
7
u
3
(u
57
21u
56
+ ··· 496u + 64)
c
9
, c
11
(u
3
+ u
2
1)(u
57
2u
56
+ ··· 3u + 9)
c
10
(u
3
u
2
+ 2u 1)(u
57
+ 2u
56
+ ··· + 3u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
3
)(y
57
30y
56
+ ··· + 4y 1)
c
2
((y 1)
3
)(y
57
2y
56
+ ··· 24y 1)
c
3
, c
8
y
3
(y
57
+ 21y
56
+ ··· 496y 64)
c
5
, c
6
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
57
+ 48y
56
+ ··· + 23y 1)
c
7
y
3
(y
57
+ 25y
56
+ ··· + 134400y 4096)
c
9
, c
11
(y
3
y
2
+ 2y 1)(y
57
32y
56
+ ··· + 1719y 81)
16