11a
58
(K11a
58
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 10 9 3 7 5 6
Solving Sequence
5,10
11 6 7
1,2
3 4 9 8
c
10
c
5
c
6
c
11
c
2
c
4
c
9
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
9u
23
+ ··· + b + u, u
28
u
27
+ ··· + a 3, u
29
+ 2u
28
+ ··· + 3u + 1i
I
u
2
= hu
2
+ b, a 1, u
12
4u
10
+ u
9
+ 6u
8
3u
7
u
6
+ 3u
5
5u
4
+ u
3
+ 3u
2
2u + 1i
I
u
3
= hb + 1, a 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
25
9u
23
+· · ·+b+u, u
28
u
27
+· · ·+a3, u
29
+2u
28
+· · ·+3u+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
u
28
+ u
27
+ ··· 5u + 3
u
25
+ 9u
23
+ ··· + 4u
2
u
a
3
=
u
28
+ 11u
26
+ ··· 8u + 1
u
28
+ u
27
+ ··· + u + 1
a
4
=
u
27
+ 11u
25
+ ··· + 6u 2
u
28
u
27
+ ··· u 1
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
8
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
28
6u
27
+ 40u
26
+ 58u
25
176u
24
236u
23
+ 428u
22
+ 482u
21
568u
20
370u
19
+ 236u
18
414u
17
+ 460u
16
+ 1092u
15
788u
14
532u
13
+ 356u
12
584u
11
+
236u
10
+ 608u
9
308u
8
+ 84u
7
+ 40u
6
178u
5
+ 60u
4
26u
3
+ 8u
2
+ 6u 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
29
2u
28
+ ··· u + 1
c
2
u
29
+ 16u
28
+ ··· + 7u + 1
c
3
, c
8
u
29
+ 2u
28
+ ··· + 2u + 2
c
5
, c
10
, c
11
u
29
+ 2u
28
+ ··· + 3u + 1
c
6
, c
7
, c
9
u
29
6u
28
+ ··· + 8u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
29
16y
28
+ ··· + 7y 1
c
2
y
29
4y
28
+ ··· 17y 1
c
3
, c
8
y
29
+ 6y
28
+ ··· + 8y 4
c
5
, c
10
, c
11
y
29
24y
28
+ ··· + 23y 1
c
6
, c
7
, c
9
y
29
+ 30y
28
+ ··· + 504y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.050913 + 0.910185I
a = 0.45193 1.39576I
b = 0.00992 2.35228I
10.46170 + 8.03356I 4.76249 5.59744I
u = 0.050913 0.910185I
a = 0.45193 + 1.39576I
b = 0.00992 + 2.35228I
10.46170 8.03356I 4.76249 + 5.59744I
u = 0.008721 + 0.887960I
a = 0.49123 + 1.42056I
b = 0.14380 + 2.36020I
10.71030 1.52343I 5.35413 + 0.68771I
u = 0.008721 0.887960I
a = 0.49123 1.42056I
b = 0.14380 2.36020I
10.71030 + 1.52343I 5.35413 0.68771I
u = 1.189730 + 0.056062I
a = 0.370086 0.255115I
b = 1.23899 0.69502I
2.39907 + 0.12369I 3.50407 + 1.07759I
u = 1.189730 0.056062I
a = 0.370086 + 0.255115I
b = 1.23899 + 0.69502I
2.39907 0.12369I 3.50407 1.07759I
u = 1.242320 + 0.189774I
a = 0.715591 + 0.438399I
b = 0.20240 + 2.88734I
0.91595 + 3.56420I 0.67873 4.99863I
u = 1.242320 0.189774I
a = 0.715591 0.438399I
b = 0.20240 2.88734I
0.91595 3.56420I 0.67873 + 4.99863I
u = 0.230236 + 0.672244I
a = 0.11327 1.56979I
b = 0.07670 1.55700I
1.85869 + 5.19499I 2.04173 8.30480I
u = 0.230236 0.672244I
a = 0.11327 + 1.56979I
b = 0.07670 + 1.55700I
1.85869 5.19499I 2.04173 + 8.30480I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.249690 + 0.417811I
a = 0.215564 0.608911I
b = 0.927812 0.165212I
3.02235 + 1.47420I 1.47993 0.60903I
u = 1.249690 0.417811I
a = 0.215564 + 0.608911I
b = 0.927812 + 0.165212I
3.02235 1.47420I 1.47993 + 0.60903I
u = 1.311940 + 0.179476I
a = 0.339083 + 0.475947I
b = 0.644137 + 0.471467I
4.98921 3.78682I 7.27007 + 4.16727I
u = 1.311940 0.179476I
a = 0.339083 0.475947I
b = 0.644137 0.471467I
4.98921 + 3.78682I 7.27007 4.16727I
u = 1.342150 + 0.040293I
a = 0.537408 0.444706I
b = 0.23164 1.41782I
6.61715 2.27209I 8.89752 + 3.80982I
u = 1.342150 0.040293I
a = 0.537408 + 0.444706I
b = 0.23164 + 1.41782I
6.61715 + 2.27209I 8.89752 3.80982I
u = 1.286000 + 0.418935I
a = 0.762208 + 0.613998I
b = 1.69138 + 2.74611I
6.68464 + 6.20004I 1.73580 3.81481I
u = 1.286000 0.418935I
a = 0.762208 0.613998I
b = 1.69138 2.74611I
6.68464 6.20004I 1.73580 + 3.81481I
u = 1.333980 + 0.244603I
a = 0.683762 0.524847I
b = 0.83387 2.33932I
3.04589 8.42692I 3.52830 + 8.66921I
u = 1.333980 0.244603I
a = 0.683762 + 0.524847I
b = 0.83387 + 2.33932I
3.04589 + 8.42692I 3.52830 8.66921I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.301320 + 0.407588I
a = 0.248387 + 0.609615I
b = 0.872384 + 0.107277I
2.63518 7.77071I 2.10858 + 5.30383I
u = 1.301320 0.407588I
a = 0.248387 0.609615I
b = 0.872384 0.107277I
2.63518 + 7.77071I 2.10858 5.30383I
u = 0.529946 + 0.329108I
a = 0.667313 0.986592I
b = 0.347726 0.588274I
0.93542 + 1.41053I 5.39446 5.74020I
u = 0.529946 0.329108I
a = 0.667313 + 0.986592I
b = 0.347726 + 0.588274I
0.93542 1.41053I 5.39446 + 5.74020I
u = 1.320520 + 0.424615I
a = 0.743481 0.622059I
b = 1.72687 2.60904I
6.1783 12.8069I 0.92308 + 8.12569I
u = 1.320520 0.424615I
a = 0.743481 + 0.622059I
b = 1.72687 + 2.60904I
6.1783 + 12.8069I 0.92308 8.12569I
u = 0.063245 + 0.516212I
a = 0.28684 + 2.09363I
b = 0.49644 + 1.38676I
3.02142 1.01433I 6.77496 + 0.83339I
u = 0.063245 0.516212I
a = 0.28684 2.09363I
b = 0.49644 1.38676I
3.02142 + 1.01433I 6.77496 0.83339I
u = 0.193938
a = 4.58305
b = 0.469396
1.29813 8.53890
7
II. I
u
2
= hu
2
+ b, a 1, u
12
4u
10
+ · · · 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
1
u
2
a
3
=
u
4
u
2
+ 1
u
6
+ 2u
4
u
2
a
4
=
u
u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
8
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
12u
7
+ 4u
6
+ 12u
5
8u
4
+ 8u
3
+ 4u
2
12u + 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
, c
11
u
12
4u
10
+ u
9
+ 6u
8
3u
7
u
6
+ 3u
5
5u
4
+ u
3
+ 3u
2
2u + 1
c
2
u
12
+ 8u
11
+ ··· 2u + 1
c
3
, c
8
(u
4
u
3
+ u
2
+ 1)
3
c
6
, c
7
, c
9
(u
4
u
3
+ 3u
2
2u + 1)
3
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
, c
11
y
12
8y
11
+ ··· + 2y + 1
c
2
y
12
8y
11
+ ··· + 2y + 1
c
3
, c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
3
c
6
, c
7
, c
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.944825 + 0.321917I
a = 1.00000
b = 0.789064 0.608311I
0.21101 1.41510I 1.82674 + 4.90874I
u = 0.944825 0.321917I
a = 1.00000
b = 0.789064 + 0.608311I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.031664 + 0.878090I
a = 1.00000
b = 0.770039 0.055609I
6.79074 + 3.16396I 1.82674 2.56480I
u = 0.031664 0.878090I
a = 1.00000
b = 0.770039 + 0.055609I
6.79074 3.16396I 1.82674 + 2.56480I
u = 1.186690 + 0.158407I
a = 1.00000
b = 1.38315 + 0.37596I
0.21101 1.41510I 1.82674 + 4.90874I
u = 1.186690 0.158407I
a = 1.00000
b = 1.38315 0.37596I
0.21101 + 1.41510I 1.82674 4.90874I
u = 1.240280 + 0.455646I
a = 1.00000
b = 1.33067 1.13025I
6.79074 3.16396I 1.82674 + 2.56480I
u = 1.240280 0.455646I
a = 1.00000
b = 1.33067 + 1.13025I
6.79074 + 3.16396I 1.82674 2.56480I
u = 1.271940 + 0.422443I
a = 1.00000
b = 1.43937 + 1.07464I
6.79074 3.16396I 1.82674 + 2.56480I
u = 1.271940 0.422443I
a = 1.00000
b = 1.43937 1.07464I
6.79074 + 3.16396I 1.82674 2.56480I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.241868 + 0.480324I
a = 1.00000
b = 0.172212 0.232350I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.241868 0.480324I
a = 1.00000
b = 0.172212 + 0.232350I
0.21101 1.41510I 1.82674 + 4.90874I
12
III. I
u
3
= hb + 1, a 1, u 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
7
=
1
0
a
1
=
0
1
a
2
=
1
1
a
3
=
1
0
a
4
=
1
0
a
9
=
1
0
a
8
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
4
, c
5
u + 1
c
3
, c
6
, c
7
c
8
, c
9
u
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
10
, c
11
y 1
c
3
, c
6
, c
7
c
8
, c
9
y
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
12
4u
10
+ ··· 2u + 1)
· (u
29
2u
28
+ ··· u + 1)
c
2
(u + 1)(u
12
+ 8u
11
+ ··· 2u + 1)(u
29
+ 16u
28
+ ··· + 7u + 1)
c
3
, c
8
u(u
4
u
3
+ u
2
+ 1)
3
(u
29
+ 2u
28
+ ··· + 2u + 2)
c
4
(u + 1)(u
12
4u
10
+ ··· 2u + 1)
· (u
29
2u
28
+ ··· u + 1)
c
5
(u + 1)(u
12
4u
10
+ ··· 2u + 1)
· (u
29
+ 2u
28
+ ··· + 3u + 1)
c
6
, c
7
, c
9
u(u
4
u
3
+ 3u
2
2u + 1)
3
(u
29
6u
28
+ ··· + 8u + 4)
c
10
, c
11
(u 1)(u
12
4u
10
+ ··· 2u + 1)
· (u
29
+ 2u
28
+ ··· + 3u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)(y
12
8y
11
+ ··· + 2y + 1)(y
29
16y
28
+ ··· + 7y 1)
c
2
(y 1)(y
12
8y
11
+ ··· + 2y + 1)(y
29
4y
28
+ ··· 17y 1)
c
3
, c
8
y(y
4
+ y
3
+ 3y
2
+ 2y + 1)
3
(y
29
+ 6y
28
+ ··· + 8y 4)
c
5
, c
10
, c
11
(y 1)(y
12
8y
11
+ ··· + 2y + 1)(y
29
24y
28
+ ··· + 23y 1)
c
6
, c
7
, c
9
y(y
4
+ 5y
3
+ ··· + 2y + 1)
3
(y
29
+ 30y
28
+ ··· + 504y 16)
18