11a
59
(K11a
59
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 10 9 3 7 6 5
Solving Sequence
2,5
4 1 3 11 6 10 7 9 8
c
4
c
1
c
2
c
11
c
5
c
10
c
6
c
9
c
8
c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
21
+ u
20
+ ··· 3u 1i
* 1 irreducible components of dim
C
= 0, with total 21 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
21
+ u
20
+ · · · 3u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
10
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
9
+ 3u
7
3u
5
+ u
a
7
=
u
12
3u
10
+ 3u
8
+ 2u
6
4u
4
+ u
2
+ 1
u
12
+ 4u
10
6u
8
+ 2u
6
+ 3u
4
2u
2
a
9
=
u
15
4u
13
+ 6u
11
8u
7
+ 6u
5
+ 2u
3
2u
u
15
+ 5u
13
10u
11
+ 7u
9
+ 4u
7
8u
5
+ 2u
3
+ u
a
8
=
u
18
5u
16
+ 10u
14
5u
12
11u
10
+ 17u
8
2u
6
8u
4
+ 3u
2
+ 1
u
18
+ 6u
16
15u
14
+ 16u
12
+ u
10
18u
8
+ 12u
6
+ 2u
4
3u
2
a
8
=
u
18
5u
16
+ 10u
14
5u
12
11u
10
+ 17u
8
2u
6
8u
4
+ 3u
2
+ 1
u
18
+ 6u
16
15u
14
+ 16u
12
+ u
10
18u
8
+ 12u
6
+ 2u
4
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
19
+ 24u
17
+ 4u
16
64u
15
20u
14
+ 76u
13
+ 44u
12
4u
11
36u
10
100u
9
16u
8
+ 92u
7
+ 56u
6
24u
4
44u
3
8u
2
+ 8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
21
u
20
+ ··· 3u + 1
c
2
u
21
+ 13u
20
+ ··· u + 1
c
3
, c
8
u
21
u
20
+ ··· + u + 1
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u
21
3u
20
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
21
13y
20
+ ··· y 1
c
2
y
21
9y
20
+ ··· + 3y 1
c
3
, c
8
y
21
+ 3y
20
+ ··· y 1
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y
21
+ 31y
20
+ ··· + 19y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.007758 + 0.949268I
16.7890 3.4594I 3.86074 + 2.19983I
u = 0.007758 0.949268I
16.7890 + 3.4594I 3.86074 2.19983I
u = 1.052520 + 0.258621I
2.94174 0.96273I 7.66565 + 0.63893I
u = 1.052520 0.258621I
2.94174 + 0.96273I 7.66565 0.63893I
u = 1.014220 + 0.391763I
1.91084 + 4.81660I 2.93817 8.87119I
u = 1.014220 0.391763I
1.91084 4.81660I 2.93817 + 8.87119I
u = 0.887361
1.29680 8.38840
u = 0.742095 + 0.310540I
0.91477 + 1.54422I 4.91782 5.70348I
u = 0.742095 0.310540I
0.91477 1.54422I 4.91782 + 5.70348I
u = 0.042739 + 0.780467I
5.48993 2.78640I 3.21012 + 3.06333I
u = 0.042739 0.780467I
5.48993 + 2.78640I 3.21012 3.06333I
u = 1.190720 + 0.447677I
8.87843 + 7.21776I 6.27845 6.45593I
u = 1.190720 0.447677I
8.87843 7.21776I 6.27845 + 6.45593I
u = 1.208770 + 0.404400I
9.21675 1.40322I 7.22383 + 0.67485I
u = 1.208770 0.404400I
9.21675 + 1.40322I 7.22383 0.67485I
u = 1.290770 + 0.486469I
18.7348 + 8.5672I 6.90755 5.03550I
u = 1.290770 0.486469I
18.7348 8.5672I 6.90755 + 5.03550I
u = 1.295050 + 0.477383I
18.6641 1.6077I 7.04859 + 0.65486I
u = 1.295050 0.477383I
18.6641 + 1.6077I 7.04859 0.65486I
u = 0.211725 + 0.440665I
0.159228 1.336100I 1.40948 + 5.21346I
u = 0.211725 0.440665I
0.159228 + 1.336100I 1.40948 5.21346I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
21
u
20
+ ··· 3u + 1
c
2
u
21
+ 13u
20
+ ··· u + 1
c
3
, c
8
u
21
u
20
+ ··· + u + 1
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u
21
3u
20
+ ··· u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
21
13y
20
+ ··· y 1
c
2
y
21
9y
20
+ ··· + 3y 1
c
3
, c
8
y
21
+ 3y
20
+ ··· y 1
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y
21
+ 31y
20
+ ··· + 19y 1
7