11a
60
(K11a
60
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 4 10 11 3 6 7 9
Solving Sequence
6,9
10 7 11
1,3
2 8 4 5
c
9
c
6
c
10
c
11
c
2
c
8
c
3
c
5
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
44
u
43
+ ··· + 3u
2
+ b, 8u
45
5u
44
+ ··· + 2a + 11, u
46
+ 3u
45
+ ··· + 3u 1i
I
u
2
= hb, a
2
au + a u + 2, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
44
u
43
+· · ·+3u
2
+b, 8u
45
5u
44
+· · ·+2a+11 , u
46
+3u
45
+· · ·+3u1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
3
=
4u
45
+
5
2
u
44
+ ··· + 18u
11
2
u
44
+ u
43
+ ··· 7u
3
3u
2
a
2
=
2u
45
+
1
2
u
44
+ ··· + 12u
7
2
3
2
u
45
3
2
u
44
+ ···
9
2
u +
3
2
a
8
=
u
3
2u
u
5
3u
3
+ u
a
4
=
u
45
1
2
u
44
+ ··· + 11u
7
2
5u
45
7u
44
+ ··· 14u + 4
a
5
=
1
2
u
44
+ u
43
+ ··· 5u
1
2
u
14
+ 8u
12
+ ··· + u
2
+ 2u
a
5
=
1
2
u
44
+ u
43
+ ··· 5u
1
2
u
14
+ 8u
12
+ ··· + u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
2
u
45
16u
44
+ ···
31
2
u + 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
46
+ 3u
45
+ ··· + 7u + 1
c
2
, c
5
u
46
+ 15u
45
+ ··· 45u + 1
c
3
, c
8
u
46
+ u
45
+ ··· 48u 16
c
6
, c
7
, c
9
c
10
u
46
+ 3u
45
+ ··· + 3u 1
c
11
u
46
11u
45
+ ··· + 5u 73
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
46
+ 15y
45
+ ··· 45y + 1
c
2
, c
5
y
46
+ 35y
45
+ ··· 2249y + 1
c
3
, c
8
y
46
+ 25y
45
+ ··· + 2176y + 256
c
6
, c
7
, c
9
c
10
y
46
53y
45
+ ··· 9y + 1
c
11
y
46
+ 7y
45
+ ··· + 31219y + 5329
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.683033 + 0.585511I
a = 1.17131 + 1.61239I
b = 0.586768 1.279220I
4.58631 10.20080I 5.76564 + 8.71859I
u = 0.683033 0.585511I
a = 1.17131 1.61239I
b = 0.586768 + 1.279220I
4.58631 + 10.20080I 5.76564 8.71859I
u = 1.107400 + 0.146429I
a = 0.192350 + 0.087991I
b = 0.167779 1.185070I
1.38563 2.89669I 7.00000 + 0.I
u = 1.107400 0.146429I
a = 0.192350 0.087991I
b = 0.167779 + 1.185070I
1.38563 + 2.89669I 7.00000 + 0.I
u = 0.644087 + 0.591749I
a = 1.12925 1.65187I
b = 0.490901 + 1.297460I
5.48925 4.23240I 3.97125 + 3.86585I
u = 0.644087 0.591749I
a = 1.12925 + 1.65187I
b = 0.490901 1.297460I
5.48925 + 4.23240I 3.97125 3.86585I
u = 0.721560 + 0.271962I
a = 0.078758 0.314563I
b = 0.586991 0.576410I
2.76000 + 0.49175I 14.4049 1.3153I
u = 0.721560 0.271962I
a = 0.078758 + 0.314563I
b = 0.586991 + 0.576410I
2.76000 0.49175I 14.4049 + 1.3153I
u = 0.625541 + 0.443656I
a = 1.32103 + 1.86857I
b = 0.437369 0.962184I
1.57427 4.58885I 10.12217 + 8.09100I
u = 0.625541 0.443656I
a = 1.32103 1.86857I
b = 0.437369 + 0.962184I
1.57427 + 4.58885I 10.12217 8.09100I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.307520 + 0.663659I
a = 0.67086 1.68681I
b = 0.327075 + 1.311180I
6.48322 + 0.00049I 1.75811 + 1.98241I
u = 0.307520 0.663659I
a = 0.67086 + 1.68681I
b = 0.327075 1.311180I
6.48322 0.00049I 1.75811 1.98241I
u = 0.259302 + 0.676556I
a = 0.61524 + 1.65084I
b = 0.443673 1.290370I
5.83960 + 5.95442I 2.89350 3.47222I
u = 0.259302 0.676556I
a = 0.61524 1.65084I
b = 0.443673 + 1.290370I
5.83960 5.95442I 2.89350 + 3.47222I
u = 1.280730 + 0.112519I
a = 0.245265 0.380738I
b = 0.020723 + 1.301980I
1.51797 + 2.92543I 0
u = 1.280730 0.112519I
a = 0.245265 + 0.380738I
b = 0.020723 1.301980I
1.51797 2.92543I 0
u = 0.529027 + 0.472674I
a = 0.104077 0.663139I
b = 1.023760 0.238308I
1.28884 + 4.36080I 6.58604 6.72191I
u = 0.529027 0.472674I
a = 0.104077 + 0.663139I
b = 1.023760 + 0.238308I
1.28884 4.36080I 6.58604 + 6.72191I
u = 0.480914 + 0.492416I
a = 0.97784 1.95842I
b = 0.137372 + 1.054990I
2.15360 1.72767I 2.05511 + 4.46443I
u = 0.480914 0.492416I
a = 0.97784 + 1.95842I
b = 0.137372 1.054990I
2.15360 + 1.72767I 2.05511 4.46443I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438186 + 0.463380I
a = 0.026707 + 0.771502I
b = 0.986397 + 0.062419I
1.56190 1.05001I 5.35085 0.93346I
u = 0.438186 0.463380I
a = 0.026707 0.771502I
b = 0.986397 0.062419I
1.56190 + 1.05001I 5.35085 + 0.93346I
u = 0.507626
a = 0.299451
b = 0.385891
0.763627 13.0210
u = 1.52489 + 0.10717I
a = 0.593194 + 0.302209I
b = 1.107570 + 0.332603I
5.01225 0.84578I 0
u = 1.52489 0.10717I
a = 0.593194 0.302209I
b = 1.107570 0.332603I
5.01225 + 0.84578I 0
u = 1.52977 + 0.12312I
a = 0.863933 0.983761I
b = 0.377563 + 1.143250I
4.55511 + 3.84471I 0
u = 1.52977 0.12312I
a = 0.863933 + 0.983761I
b = 0.377563 1.143250I
4.55511 3.84471I 0
u = 1.53985 + 0.07420I
a = 0.78183 + 1.34401I
b = 0.289274 0.982056I
7.15725 0.57650I 0
u = 1.53985 0.07420I
a = 0.78183 1.34401I
b = 0.289274 + 0.982056I
7.15725 + 0.57650I 0
u = 1.54840 + 0.12785I
a = 0.555669 0.368908I
b = 1.123810 0.444850I
5.69586 6.48224I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54840 0.12785I
a = 0.555669 + 0.368908I
b = 1.123810 + 0.444850I
5.69586 + 6.48224I 0
u = 1.56614
a = 0.397337
b = 0.732082
7.96363 0
u = 0.374900 + 0.216095I
a = 0.66143 + 2.89217I
b = 0.016090 0.601274I
0.45061 + 1.71194I 2.49876 + 0.88608I
u = 0.374900 0.216095I
a = 0.66143 2.89217I
b = 0.016090 + 0.601274I
0.45061 1.71194I 2.49876 0.88608I
u = 1.57913 + 0.12981I
a = 1.16947 + 0.97231I
b = 0.561226 1.073100I
9.03771 + 6.69933I 0
u = 1.57913 0.12981I
a = 1.16947 0.97231I
b = 0.561226 + 1.073100I
9.03771 6.69933I 0
u = 1.57933 + 0.18068I
a = 1.126920 0.715105I
b = 0.63333 + 1.27572I
1.94737 + 7.08897I 0
u = 1.57933 0.18068I
a = 1.126920 + 0.715105I
b = 0.63333 1.27572I
1.94737 7.08897I 0
u = 1.59661 + 0.17970I
a = 1.197120 + 0.701362I
b = 0.70332 1.25495I
3.07316 + 13.05900I 0
u = 1.59661 0.17970I
a = 1.197120 0.701362I
b = 0.70332 + 1.25495I
3.07316 13.05900I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60828 + 0.06972I
a = 0.335640 0.307192I
b = 0.725228 0.531744I
10.75540 1.74430I 0
u = 1.60828 0.06972I
a = 0.335640 + 0.307192I
b = 0.725228 + 0.531744I
10.75540 + 1.74430I 0
u = 0.146575 + 0.355630I
a = 0.07132 + 2.11990I
b = 0.324197 0.645662I
0.43858 + 1.61222I 5.01416 3.15107I
u = 0.146575 0.355630I
a = 0.07132 2.11990I
b = 0.324197 + 0.645662I
0.43858 1.61222I 5.01416 + 3.15107I
u = 1.66888 + 0.01472I
a = 0.052432 0.383179I
b = 0.131270 0.825055I
8.02868 + 2.53357I 0
u = 1.66888 0.01472I
a = 0.052432 + 0.383179I
b = 0.131270 + 0.825055I
8.02868 2.53357I 0
9
II. I
u
2
= hb, a
2
au + a u + 2, u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u + 1
a
7
=
u
u 1
a
11
=
u
u
a
1
=
0
u
a
3
=
a
0
a
2
=
a
au a
a
8
=
1
0
a
4
=
a
0
a
5
=
a u + 1
u
a
5
=
a u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3au 2a + u 16
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
8
u
4
c
4
(u
2
u + 1)
2
c
6
, c
7
(u
2
+ u 1)
2
c
9
, c
10
, c
11
(u
2
u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
8
y
4
c
6
, c
7
, c
9
c
10
, c
11
(y
2
3y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.80902 + 1.40126I
b = 0
0.98696 + 2.02988I 13.5000 5.4006I
u = 0.618034
a = 0.80902 1.40126I
b = 0
0.98696 2.02988I 13.5000 + 5.4006I
u = 1.61803
a = 0.309017 + 0.535233I
b = 0
8.88264 2.02988I 13.50000 + 1.52761I
u = 1.61803
a = 0.309017 0.535233I
b = 0
8.88264 + 2.02988I 13.50000 1.52761I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
46
+ 3u
45
+ ··· + 7u + 1)
c
2
, c
5
((u
2
+ u + 1)
2
)(u
46
+ 15u
45
+ ··· 45u + 1)
c
3
, c
8
u
4
(u
46
+ u
45
+ ··· 48u 16)
c
4
((u
2
u + 1)
2
)(u
46
+ 3u
45
+ ··· + 7u + 1)
c
6
, c
7
((u
2
+ u 1)
2
)(u
46
+ 3u
45
+ ··· + 3u 1)
c
9
, c
10
((u
2
u 1)
2
)(u
46
+ 3u
45
+ ··· + 3u 1)
c
11
((u
2
u 1)
2
)(u
46
11u
45
+ ··· + 5u 73)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
46
+ 15y
45
+ ··· 45y + 1)
c
2
, c
5
((y
2
+ y + 1)
2
)(y
46
+ 35y
45
+ ··· 2249y + 1)
c
3
, c
8
y
4
(y
46
+ 25y
45
+ ··· + 2176y + 256)
c
6
, c
7
, c
9
c
10
((y
2
3y + 1)
2
)(y
46
53y
45
+ ··· 9y + 1)
c
11
((y
2
3y + 1)
2
)(y
46
+ 7y
45
+ ··· + 31219y + 5329)
15