11a
64
(K11a
64
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 4 11 10 3 8 6 7
Solving Sequence
6,10
11 7 8
1,4
5 2 9 3
c
10
c
6
c
7
c
11
c
5
c
1
c
9
c
3
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5u
49
9u
48
+ ··· + b + 4, 3u
49
+ 4u
48
+ ··· + 2a 1, u
50
+ 3u
49
+ ··· + 9u
2
1i
I
u
2
= hb, a
2
a + 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−5u
49
9u
48
+· · ·+b+4, 3u
49
+4u
48
+· · ·+2a1, u
50
+3u
49
+· · ·+9u
2
1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
8
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
3
2
u
49
2u
48
+ ··· +
1
2
u +
1
2
5u
49
+ 9u
48
+ ··· + 4u 4
a
5
=
1
2
u
49
+ u
48
+ ···
11
2
u +
1
2
u
16
+ 6u
14
+ ··· 6u
3
+ 4u
2
a
2
=
5
2
u
49
+ 4u
48
+ ··· +
1
2
u
1
2
1
2
u
49
u
48
+ ···
1
2
u +
1
2
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
3
=
9
2
u
49
8u
48
+ ···
5
2
u +
5
2
2u
49
3u
48
+ ··· 8u
2
+ 1
a
3
=
9
2
u
49
8u
48
+ ···
5
2
u +
5
2
2u
49
3u
48
+ ··· 8u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18u
49
27u
48
+ ··· 2u + 25
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
50
+ 2u
49
+ ··· 3u + 1
c
2
, c
5
u
50
+ 18u
49
+ ··· + u + 1
c
3
, c
8
u
50
+ u
49
+ ··· + 4u 4
c
6
, c
10
, c
11
u
50
+ 3u
49
+ ··· + 9u
2
1
c
7
, c
9
u
50
15u
49
+ ··· 104u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
50
+ 18y
49
+ ··· + y + 1
c
2
, c
5
y
50
+ 30y
49
+ ··· 119y + 1
c
3
, c
8
y
50
15y
49
+ ··· 104y + 16
c
6
, c
10
, c
11
y
50
41y
49
+ ··· 18y + 1
c
7
, c
9
y
50
+ 37y
49
+ ··· 3360y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.087890 + 0.165328I
a = 0.139852 0.213211I
b = 0.645187 0.289728I
1.40881 + 0.77400I 6.94609 + 0.I
u = 1.087890 0.165328I
a = 0.139852 + 0.213211I
b = 0.645187 + 0.289728I
1.40881 0.77400I 6.94609 + 0.I
u = 0.126757 + 0.868356I
a = 1.47159 0.94278I
b = 1.22103 1.33662I
2.73323 + 9.52065I 5.03643 7.69857I
u = 0.126757 0.868356I
a = 1.47159 + 0.94278I
b = 1.22103 + 1.33662I
2.73323 9.52065I 5.03643 + 7.69857I
u = 0.133262 + 0.831170I
a = 1.011800 + 0.474392I
b = 0.865719 + 1.020570I
1.38173 + 4.04307I 7.01868 3.20265I
u = 0.133262 0.831170I
a = 1.011800 0.474392I
b = 0.865719 1.020570I
1.38173 4.04307I 7.01868 + 3.20265I
u = 1.096200 + 0.388771I
a = 0.323801 0.626772I
b = 0.168381 + 0.406270I
1.57629 + 0.36486I 0
u = 1.096200 0.388771I
a = 0.323801 + 0.626772I
b = 0.168381 0.406270I
1.57629 0.36486I 0
u = 0.047274 + 0.835322I
a = 0.00341 1.47071I
b = 0.19335 1.77874I
7.20082 + 2.98868I 0.09209 2.99503I
u = 0.047274 0.835322I
a = 0.00341 + 1.47071I
b = 0.19335 + 1.77874I
7.20082 2.98868I 0.09209 + 2.99503I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.136100 + 0.443889I
a = 0.860244 + 0.826310I
b = 0.311641 0.759236I
0.35735 4.82997I 0
u = 1.136100 0.443889I
a = 0.860244 0.826310I
b = 0.311641 + 0.759236I
0.35735 + 4.82997I 0
u = 0.039568 + 0.776582I
a = 1.63186 0.95120I
b = 0.93537 1.48672I
3.45504 3.62076I 3.32917 + 2.61098I
u = 0.039568 0.776582I
a = 1.63186 + 0.95120I
b = 0.93537 + 1.48672I
3.45504 + 3.62076I 3.32917 2.61098I
u = 0.566666 + 0.530676I
a = 1.15612 + 0.89658I
b = 0.785797 + 0.191841I
3.39308 0.60483I 12.63177 0.83622I
u = 0.566666 0.530676I
a = 1.15612 0.89658I
b = 0.785797 0.191841I
3.39308 + 0.60483I 12.63177 + 0.83622I
u = 0.490724 + 0.589200I
a = 0.95926 1.35644I
b = 0.676569 0.417065I
3.13688 + 4.70114I 11.25136 7.35452I
u = 0.490724 0.589200I
a = 0.95926 + 1.35644I
b = 0.676569 + 0.417065I
3.13688 4.70114I 11.25136 + 7.35452I
u = 1.260390 + 0.078461I
a = 0.689828 0.574408I
b = 0.592579 0.232734I
2.80671 3.20550I 0
u = 1.260390 0.078461I
a = 0.689828 + 0.574408I
b = 0.592579 + 0.232734I
2.80671 + 3.20550I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.015463 + 0.734978I
a = 0.963235 + 0.305603I
b = 0.523840 + 1.031980I
1.96381 + 1.49641I 5.67052 2.83851I
u = 0.015463 0.734978I
a = 0.963235 0.305603I
b = 0.523840 1.031980I
1.96381 1.49641I 5.67052 + 2.83851I
u = 1.241070 + 0.324695I
a = 0.822795 + 0.783089I
b = 0.089700 0.769159I
0.243412 0.350536I 0
u = 1.241070 0.324695I
a = 0.822795 0.783089I
b = 0.089700 + 0.769159I
0.243412 + 0.350536I 0
u = 1.224770 + 0.385024I
a = 0.859798 0.298010I
b = 0.74436 1.63598I
3.57195 + 1.39688I 0
u = 1.224770 0.385024I
a = 0.859798 + 0.298010I
b = 0.74436 + 1.63598I
3.57195 1.39688I 0
u = 1.274810 + 0.306801I
a = 0.023714 + 0.698294I
b = 2.16911 + 1.11902I
1.95830 + 2.25536I 0
u = 1.274810 0.306801I
a = 0.023714 0.698294I
b = 2.16911 1.11902I
1.95830 2.25536I 0
u = 1.311800 + 0.024858I
a = 0.171282 0.913457I
b = 0.44051 2.72877I
5.15830 + 2.67468I 0
u = 1.311800 0.024858I
a = 0.171282 + 0.913457I
b = 0.44051 + 2.72877I
5.15830 2.67468I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.32705
a = 0.308792
b = 1.01507
5.84071 0
u = 1.290930 + 0.313969I
a = 0.384785 0.354450I
b = 0.676082 + 0.534271I
2.12444 5.28818I 0
u = 1.290930 0.313969I
a = 0.384785 + 0.354450I
b = 0.676082 0.534271I
2.12444 + 5.28818I 0
u = 1.297340 + 0.337432I
a = 0.180485 1.100720I
b = 2.31845 1.85146I
0.72091 + 7.64132I 0
u = 1.297340 0.337432I
a = 0.180485 + 1.100720I
b = 2.31845 + 1.85146I
0.72091 7.64132I 0
u = 1.302710 + 0.373085I
a = 0.869978 0.369291I
b = 1.05915 1.45675I
2.98615 7.33040I 0
u = 1.302710 0.373085I
a = 0.869978 + 0.369291I
b = 1.05915 + 1.45675I
2.98615 + 7.33040I 0
u = 1.352760 + 0.362996I
a = 0.035493 + 0.735238I
b = 2.06776 + 0.99691I
3.29225 8.34439I 0
u = 1.352760 0.362996I
a = 0.035493 0.735238I
b = 2.06776 0.99691I
3.29225 + 8.34439I 0
u = 1.356030 + 0.382707I
a = 0.148346 1.113900I
b = 2.30162 1.44569I
1.9302 14.0131I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.356030 0.382707I
a = 0.148346 + 1.113900I
b = 2.30162 + 1.44569I
1.9302 + 14.0131I 0
u = 1.41586 + 0.11171I
a = 0.068754 + 0.864041I
b = 1.19732 + 1.43891I
9.73666 1.34570I 0
u = 1.41586 0.11171I
a = 0.068754 0.864041I
b = 1.19732 1.43891I
9.73666 + 1.34570I 0
u = 1.41536 + 0.14641I
a = 0.125925 0.999357I
b = 0.70733 1.72091I
9.27302 7.09927I 0
u = 1.41536 0.14641I
a = 0.125925 + 0.999357I
b = 0.70733 + 1.72091I
9.27302 + 7.09927I 0
u = 0.104654 + 0.432324I
a = 0.39489 1.38867I
b = 0.504003 0.064352I
1.18724 + 1.58310I 1.45548 5.77798I
u = 0.104654 0.432324I
a = 0.39489 + 1.38867I
b = 0.504003 + 0.064352I
1.18724 1.58310I 1.45548 + 5.77798I
u = 0.375797
a = 0.231356
b = 0.443920
0.739246 14.0540
u = 0.263398 + 0.099445I
a = 0.15916 3.77330I
b = 0.163758 0.657660I
0.39231 2.25929I 1.99740 + 3.42645I
u = 0.263398 0.099445I
a = 0.15916 + 3.77330I
b = 0.163758 + 0.657660I
0.39231 + 2.25929I 1.99740 3.42645I
9
II. I
u
2
= hb, a
2
a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
10
=
1
0
a
11
=
1
1
a
7
=
1
0
a
8
=
1
0
a
1
=
0
1
a
4
=
a
0
a
5
=
a 1
1
a
2
=
a
a
a
9
=
1
0
a
3
=
a
0
a
3
=
a
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a + 7
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
2
+ u + 1
c
3
, c
7
, c
8
c
9
u
2
c
4
u
2
u + 1
c
6
(u + 1)
2
c
10
, c
11
(u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
y
2
+ y + 1
c
3
, c
7
, c
8
c
9
y
2
c
6
, c
10
, c
11
(y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0
1.64493 2.02988I 9.00000 + 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0
1.64493 + 2.02988I 9.00000 3.46410I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)(u
50
+ 2u
49
+ ··· 3u + 1)
c
2
, c
5
(u
2
+ u + 1)(u
50
+ 18u
49
+ ··· + u + 1)
c
3
, c
8
u
2
(u
50
+ u
49
+ ··· + 4u 4)
c
4
(u
2
u + 1)(u
50
+ 2u
49
+ ··· 3u + 1)
c
6
((u + 1)
2
)(u
50
+ 3u
49
+ ··· + 9u
2
1)
c
7
, c
9
u
2
(u
50
15u
49
+ ··· 104u + 16)
c
10
, c
11
((u 1)
2
)(u
50
+ 3u
49
+ ··· + 9u
2
1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ y + 1)(y
50
+ 18y
49
+ ··· + y + 1)
c
2
, c
5
(y
2
+ y + 1)(y
50
+ 30y
49
+ ··· 119y + 1)
c
3
, c
8
y
2
(y
50
15y
49
+ ··· 104y + 16)
c
6
, c
10
, c
11
((y 1)
2
)(y
50
41y
49
+ ··· 18y + 1)
c
7
, c
9
y
2
(y
50
+ 37y
49
+ ··· 3360y + 256)
15