11a
65
(K11a
65
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 4 11 10 3 8 7 6
Solving Sequence
3,8
9 4 10 7 11 6 1 2 5
c
8
c
3
c
9
c
7
c
10
c
6
c
11
c
2
c
5
c
1
, c
4
Ideals for irreducible components
2
of X
par
I
u
1
= hu
29
+ u
28
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
29
+ u
28
+ · · · u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
2
a
7
=
u
4
u
2
+ 1
u
4
a
11
=
u
6
+ u
4
2u
2
+ 1
u
6
u
2
a
6
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
8
+ 2u
4
a
1
=
u
10
+ u
8
4u
6
+ 3u
4
3u
2
+ 1
u
10
3u
6
u
2
a
2
=
u
21
2u
19
+ ··· 6u
3
+ u
u
21
u
19
+ 7u
17
6u
15
+ 16u
13
11u
11
+ 13u
9
6u
7
+ 3u
5
u
3
+ u
a
5
=
u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ 1
u
14
+ 2u
12
5u
10
+ 8u
8
6u
6
+ 6u
4
u
2
a
5
=
u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ 1
u
14
+ 2u
12
5u
10
+ 8u
8
6u
6
+ 6u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
27
+ 4u
26
8u
25
12u
24
+ 44u
23
+ 48u
22
72u
21
104u
20
+
184u
19
+ 208u
18
240u
17
324u
16
+ 364u
15
+ 404u
14
360u
13
440u
12
+ 340u
11
+
352u
10
228u
9
256u
8
+ 124u
7
+ 124u
6
32u
5
48u
4
+ 8u
3
+ 8u
2
+ 12u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
29
+ u
28
+ ··· + 3u 1
c
2
, c
5
u
29
+ 11u
28
+ ··· + 3u 1
c
3
, c
8
u
29
+ u
28
+ ··· u 1
c
6
, c
7
, c
9
c
10
, c
11
u
29
5u
28
+ ··· + 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
29
+ 11y
28
+ ··· + 3y 1
c
2
, c
5
y
29
+ 15y
28
+ ··· + 95y 1
c
3
, c
8
y
29
5y
28
+ ··· + 3y 1
c
6
, c
7
, c
9
c
10
, c
11
y
29
+ 39y
28
+ ··· + 15y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.662542 + 0.733995I
2.87279 3.43190I 1.84331 + 2.63617I
u = 0.662542 0.733995I
2.87279 + 3.43190I 1.84331 2.63617I
u = 0.860153 + 0.603140I
0.92695 3.26280I 6.14452 + 3.98889I
u = 0.860153 0.603140I
0.92695 + 3.26280I 6.14452 3.98889I
u = 0.800498 + 0.711356I
6.28353 + 2.63192I 1.57742 3.51356I
u = 0.800498 0.711356I
6.28353 2.63192I 1.57742 + 3.51356I
u = 0.670146 + 0.643469I
1.53821 1.44300I 4.26199 + 3.33866I
u = 0.670146 0.643469I
1.53821 + 1.44300I 4.26199 3.33866I
u = 0.897053 + 0.637489I
2.10190 + 8.51637I 4.12248 8.75770I
u = 0.897053 0.637489I
2.10190 8.51637I 4.12248 + 8.75770I
u = 0.863375 + 0.243437I
2.76289 4.79469I 10.76150 + 7.92652I
u = 0.863375 0.243437I
2.76289 + 4.79469I 10.76150 7.92652I
u = 0.849421 + 0.171489I
3.14251 0.34812I 12.60939 1.20059I
u = 0.849421 0.171489I
3.14251 + 0.34812I 12.60939 + 1.20059I
u = 0.567456 + 0.428614I
1.16133 1.54019I 1.06319 + 5.77766I
u = 0.567456 0.428614I
1.16133 + 1.54019I 1.06319 5.77766I
u = 0.925735 + 0.921889I
10.84070 + 1.59263I 4.08077 2.18896I
u = 0.925735 0.921889I
10.84070 1.59263I 4.08077 + 2.18896I
u = 0.922097 + 0.934395I
12.57420 + 3.90608I 1.76608 2.34733I
u = 0.922097 0.934395I
12.57420 3.90608I 1.76608 + 2.34733I
u = 0.955680 + 0.906089I
10.74280 + 5.13666I 4.24719 2.41278I
u = 0.955680 0.906089I
10.74280 5.13666I 4.24719 + 2.41278I
u = 0.948212 + 0.927384I
16.7628 3.4088I 1.58895 + 2.29581I
u = 0.948212 0.927384I
16.7628 + 3.4088I 1.58895 2.29581I
u = 0.966924 + 0.909523I
12.4263 10.6865I 2.06858 + 6.86438I
u = 0.966924 0.909523I
12.4263 + 10.6865I 2.06858 6.86438I
u = 0.587859
0.756056 13.9270
u = 0.086497 + 0.514422I
0.39338 + 2.26507I 2.23388 3.17909I
u = 0.086497 0.514422I
0.39338 2.26507I 2.23388 + 3.17909I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
29
+ u
28
+ ··· + 3u 1
c
2
, c
5
u
29
+ 11u
28
+ ··· + 3u 1
c
3
, c
8
u
29
+ u
28
+ ··· u 1
c
6
, c
7
, c
9
c
10
, c
11
u
29
5u
28
+ ··· + 3u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
29
+ 11y
28
+ ··· + 3y 1
c
2
, c
5
y
29
+ 15y
28
+ ··· + 95y 1
c
3
, c
8
y
29
5y
28
+ ··· + 3y 1
c
6
, c
7
, c
9
c
10
, c
11
y
29
+ 39y
28
+ ··· + 15y 1
7