11a
74
(K11a
74
)
A knot diagram
1
Linearized knot diagam
6 1 7 10 2 3 4 11 5 8 9
Solving Sequence
1,6
2 3 7
5,9
10 4 11 8
c
1
c
2
c
6
c
5
c
9
c
4
c
11
c
8
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
39
u
38
+ ··· + b u, u
39
+ u
38
+ ··· + a + 1, u
41
+ 2u
40
+ ··· + u + 1i
I
u
2
= hb + 1, u
3
+ u
2
+ a u, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
39
u
38
+ · · · + b u, u
39
+ u
38
+ · · · + a + 1, u
41
+ 2u
40
+ · · · + u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
7
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
5
=
u
u
3
+ u
a
9
=
u
39
u
38
+ ··· + 3u
2
1
u
39
+ u
38
+ ··· 2u
2
+ u
a
10
=
u
38
u
37
+ ··· + 7u
3
+ 2u
2
2u
39
+ u
38
+ ··· 2u
2
+ 2u
a
4
=
u
8
3u
6
3u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
11
=
u
37
u
36
+ ··· + 2u
2
u
u
39
+ u
38
+ ··· 2u
2
+ 2u
a
8
=
u
11
4u
9
6u
7
2u
5
+ 3u
3
+ 2u
u
11
+ 3u
9
+ 4u
7
+ u
5
u
3
u
a
8
=
u
11
4u
9
6u
7
2u
5
+ 3u
3
+ 2u
u
11
+ 3u
9
+ 4u
7
+ u
5
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
40
+7u
39
+54u
38
+82u
37
+340u
36
+462u
35
+1312u
34
+1616u
33
+3403u
32
+3822u
31
+
6077u
30
+6214u
29
+7177u
28
+6582u
27
+4494u
26
+3388u
25
1027u
24
1627u
23
4964u
22
4460u
21
4186u
20
3422u
19
796u
18
982u
17
+ 949u
16
+ 82u
15
+ 258u
14
40u
13
510u
12
+20u
11
226u
10
+250u
9
+184u
8
+183u
7
+146u
6
+8u
5
+26u
4
2u
3
+6u
2
+10u1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
2u
40
+ ··· + u 1
c
2
u
41
+ 24u
40
+ ··· + u 1
c
3
, c
6
, c
7
u
41
+ 2u
40
+ ··· + 21u 9
c
4
, c
9
u
41
+ u
40
+ ··· 64u 32
c
8
, c
10
, c
11
u
41
6u
40
+ ··· + 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 24y
40
+ ··· + y 1
c
2
y
41
12y
40
+ ··· + 33y 1
c
3
, c
6
, c
7
y
41
48y
40
+ ··· + 81y 81
c
4
, c
9
y
41
+ 33y
40
+ ··· + 512y 1024
c
8
, c
10
, c
11
y
41
44y
40
+ ··· 5y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.364109 + 0.887001I
a = 0.877550 0.609658I
b = 0.140178 + 0.229591I
0.38668 1.88770I 0.82834 + 4.08923I
u = 0.364109 0.887001I
a = 0.877550 + 0.609658I
b = 0.140178 0.229591I
0.38668 + 1.88770I 0.82834 4.08923I
u = 0.565729 + 0.744684I
a = 1.96011 1.23038I
b = 1.43778 + 0.03286I
4.81720 2.24797I 7.05405 + 3.58512I
u = 0.565729 0.744684I
a = 1.96011 + 1.23038I
b = 1.43778 0.03286I
4.81720 + 2.24797I 7.05405 3.58512I
u = 0.298074 + 1.039800I
a = 0.514134 + 0.273626I
b = 0.700394 0.515888I
3.51943 + 0.95935I 11.65925 0.88774I
u = 0.298074 1.039800I
a = 0.514134 0.273626I
b = 0.700394 + 0.515888I
3.51943 0.95935I 11.65925 + 0.88774I
u = 0.906696 + 0.062300I
a = 0.638168 + 1.087060I
b = 1.59428 0.29257I
14.7183 + 7.2472I 9.00971 3.32831I
u = 0.906696 0.062300I
a = 0.638168 1.087060I
b = 1.59428 + 0.29257I
14.7183 7.2472I 9.00971 + 3.32831I
u = 0.887554
a = 0.0395218
b = 1.52039
9.70106 8.09810
u = 0.881624 + 0.022769I
a = 0.255857 1.353200I
b = 0.605844 + 0.876406I
7.47580 + 2.91735I 7.30362 2.76521I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.881624 0.022769I
a = 0.255857 + 1.353200I
b = 0.605844 0.876406I
7.47580 2.91735I 7.30362 + 2.76521I
u = 0.432258 + 1.033390I
a = 0.47465 1.53898I
b = 0.391212 + 0.669630I
2.52915 + 5.16995I 7.30241 8.37437I
u = 0.432258 1.033390I
a = 0.47465 + 1.53898I
b = 0.391212 0.669630I
2.52915 5.16995I 7.30241 + 8.37437I
u = 0.373802 + 1.057220I
a = 1.20238 + 1.81940I
b = 1.310670 0.105352I
4.92250 3.20490I 9.59732 + 4.05642I
u = 0.373802 1.057220I
a = 1.20238 1.81940I
b = 1.310670 + 0.105352I
4.92250 + 3.20490I 9.59732 4.05642I
u = 0.525055 + 1.060430I
a = 0.31545 + 2.34266I
b = 1.48731 0.19599I
8.67231 + 8.22528I 10.03835 7.21842I
u = 0.525055 1.060430I
a = 0.31545 2.34266I
b = 1.48731 + 0.19599I
8.67231 8.22528I 10.03835 + 7.21842I
u = 0.195299 + 1.170820I
a = 0.767934 + 0.191612I
b = 1.56724 + 0.10428I
11.13990 1.05429I 13.63109 + 0.13245I
u = 0.195299 1.170820I
a = 0.767934 0.191612I
b = 1.56724 0.10428I
11.13990 + 1.05429I 13.63109 0.13245I
u = 0.800839
a = 0.186265
b = 0.436537
3.04591 0.386480
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.128656 + 0.767561I
a = 0.21319 1.98784I
b = 1.017510 + 0.191133I
2.24222 + 0.82014I 9.63668 + 2.36048I
u = 0.128656 0.767561I
a = 0.21319 + 1.98784I
b = 1.017510 0.191133I
2.24222 0.82014I 9.63668 2.36048I
u = 0.688250 + 0.327330I
a = 1.66239 0.83418I
b = 1.48572 + 0.13886I
6.57625 3.60929I 7.29460 + 2.69532I
u = 0.688250 0.327330I
a = 1.66239 + 0.83418I
b = 1.48572 0.13886I
6.57625 + 3.60929I 7.29460 2.69532I
u = 0.333948 + 0.659183I
a = 0.690566 + 1.131080I
b = 0.109267 0.349284I
0.264887 1.334670I 0.48301 + 5.63905I
u = 0.333948 0.659183I
a = 0.690566 1.131080I
b = 0.109267 + 0.349284I
0.264887 + 1.334670I 0.48301 5.63905I
u = 0.457167 + 1.214570I
a = 0.555238 + 0.444951I
b = 0.484933 0.052973I
6.61640 + 4.50390I 3.48122 3.67405I
u = 0.457167 1.214570I
a = 0.555238 0.444951I
b = 0.484933 + 0.052973I
6.61640 4.50390I 3.48122 + 3.67405I
u = 0.454729 + 1.257900I
a = 0.400211 0.118984I
b = 0.645598 + 0.885516I
11.36890 1.81360I 10.77547 + 0.I
u = 0.454729 1.257900I
a = 0.400211 + 0.118984I
b = 0.645598 0.885516I
11.36890 + 1.81360I 10.77547 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.478913 + 1.251130I
a = 0.91026 + 1.09596I
b = 0.586679 0.909041I
11.19120 7.77933I 10.30522 + 0.I
u = 0.478913 1.251130I
a = 0.91026 1.09596I
b = 0.586679 + 0.909041I
11.19120 + 7.77933I 10.30522 + 0.I
u = 0.468114 + 1.257970I
a = 1.26020 1.20638I
b = 1.53681 + 0.02313I
13.5218 + 4.8223I 11.32712 + 0.I
u = 0.468114 1.257970I
a = 1.26020 + 1.20638I
b = 1.53681 0.02313I
13.5218 4.8223I 11.32712 + 0.I
u = 0.433062 + 1.278700I
a = 0.599578 0.329232I
b = 1.61634 0.28380I
18.8600 + 2.5415I 12.61033 + 0.I
u = 0.433062 1.278700I
a = 0.599578 + 0.329232I
b = 1.61634 + 0.28380I
18.8600 2.5415I 12.61033 + 0.I
u = 0.503212 + 1.254770I
a = 0.78669 2.05025I
b = 1.59379 + 0.31268I
18.3390 12.3052I 11.90943 + 0.I
u = 0.503212 1.254770I
a = 0.78669 + 2.05025I
b = 1.59379 0.31268I
18.3390 + 12.3052I 11.90943 + 0.I
u = 0.470933 + 0.246766I
a = 0.87628 + 1.55909I
b = 0.369677 0.476409I
0.44649 1.42241I 3.04926 + 5.00918I
u = 0.470933 0.246766I
a = 0.87628 1.55909I
b = 0.369677 + 0.476409I
0.44649 + 1.42241I 3.04926 5.00918I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.424359
a = 0.373964
b = 1.18396
2.34309 2.85450
9
II. I
u
2
= hb + 1, u
3
+ u
2
+ a u, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
5
=
u
u
3
+ u
a
9
=
u
3
u
2
+ u
1
a
10
=
u
3
u
2
+ u
1
a
4
=
u
u
3
+ u
a
11
=
u
3
u
2
+ u + 1
1
a
8
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
+ 7u
3
8u
2
+ 6u 12
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 2u
3
u
2
+ u 1
c
2
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
3
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
, c
9
u
5
c
5
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
6
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
8
(u 1)
5
c
10
, c
11
(u + 1)
5
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
3
, c
6
, c
7
y
5
5y
4
+ 8y
3
3y
2
y 1
c
4
, c
9
y
5
c
8
, c
10
, c
11
(y 1)
5
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.871221 + 1.107660I
b = 1.00000
1.97403 1.53058I 5.00899 + 6.23673I
u = 0.339110 0.822375I
a = 0.871221 1.107660I
b = 1.00000
1.97403 + 1.53058I 5.00899 6.23673I
u = 0.766826
a = 0.629714
b = 1.00000
4.04602 9.63840
u = 0.455697 + 1.200150I
a = 0.186078 0.874646I
b = 1.00000
7.51750 + 4.40083I 13.17182 3.02310I
u = 0.455697 1.200150I
a = 0.186078 + 0.874646I
b = 1.00000
7.51750 4.40083I 13.17182 + 3.02310I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
41
2u
40
+ ··· + u 1)
c
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
41
+ 24u
40
+ ··· + u 1)
c
3
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
41
+ 2u
40
+ ··· + 21u 9)
c
4
, c
9
u
5
(u
41
+ u
40
+ ··· 64u 32)
c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
41
2u
40
+ ··· + u 1)
c
6
, c
7
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
41
+ 2u
40
+ ··· + 21u 9)
c
8
((u 1)
5
)(u
41
6u
40
+ ··· + 3u 1)
c
10
, c
11
((u + 1)
5
)(u
41
6u
40
+ ··· + 3u 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
41
+ 24y
40
+ ··· + y 1)
c
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
41
12y
40
+ ··· + 33y 1)
c
3
, c
6
, c
7
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
41
48y
40
+ ··· + 81y 81)
c
4
, c
9
y
5
(y
41
+ 33y
40
+ ··· + 512y 1024)
c
8
, c
10
, c
11
((y 1)
5
)(y
41
44y
40
+ ··· 5y 1)
15