11a
75
(K11a
75
)
A knot diagram
1
Linearized knot diagam
6 1 7 10 2 3 4 11 5 9 8
Solving Sequence
5,9
10 11 4 8 1 7 3 2 6
c
9
c
10
c
4
c
8
c
11
c
7
c
3
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
41
+ u
40
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
41
+ u
40
+ · · · + u + 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
11
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
a
1
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
7
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
10
2u
8
3u
6
4u
4
u
2
a
3
=
u
15
+ 2u
13
+ 6u
11
+ 8u
9
+ 10u
7
+ 8u
5
+ 4u
3
u
17
3u
15
7u
13
12u
11
13u
9
12u
7
6u
5
+ u
a
2
=
u
29
4u
27
+ ··· + 8u
3
+ u
u
29
+ 3u
27
+ ··· u
3
+ u
a
6
=
u
22
3u
20
+ ··· + 2u
2
+ 1
u
24
+ 4u
22
+ ··· 6u
4
2u
2
a
6
=
u
22
3u
20
+ ··· + 2u
2
+ 1
u
24
+ 4u
22
+ ··· 6u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
39
4u
38
20u
37
20u
36
88u
35
84u
34
256u
33
240u
32
640u
31
572u
30
1280u
29
1108u
28
2208u
27
1808u
26
3192u
25
2484u
24
3956u
23
2856u
22
4076u
21
2692u
20
3468u
19
1996u
18
2228u
17
1004u
16
924u
15
144u
14
+ 56u
13
+
304u
12
+ 416u
11
+ 344u
10
+ 356u
9
+ 168u
8
+ 128u
7
+ 12u
6
20u
4
32u
3
12u
2
12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
u
40
+ ··· + u + 1
c
2
u
41
+ 23u
40
+ ··· 3u 1
c
3
, c
6
, c
7
u
41
+ u
40
+ ··· 7u + 1
c
4
, c
9
u
41
+ u
40
+ ··· + u + 1
c
8
, c
10
, c
11
u
41
+ 11u
40
+ ··· 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 23y
40
+ ··· 3y 1
c
2
y
41
9y
40
+ ··· 19y 1
c
3
, c
6
, c
7
y
41
41y
40
+ ··· 51y 1
c
4
, c
9
y
41
+ 11y
40
+ ··· 3y 1
c
8
, c
10
, c
11
y
41
+ 39y
40
+ ··· 11y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.273309 + 1.007330I
6.20529 3.05813I 7.49814 + 3.80729I
u = 0.273309 1.007330I
6.20529 + 3.05813I 7.49814 3.80729I
u = 0.253711 + 1.021940I
10.01040 1.50035I 11.08025 0.35088I
u = 0.253711 1.021940I
10.01040 + 1.50035I 11.08025 + 0.35088I
u = 0.289765 + 1.022350I
9.79545 + 7.79305I 10.43974 6.91622I
u = 0.289765 1.022350I
9.79545 7.79305I 10.43974 + 6.91622I
u = 0.352546 + 0.864150I
2.13456 4.94858I 7.01922 + 9.44337I
u = 0.352546 0.864150I
2.13456 + 4.94858I 7.01922 9.44337I
u = 0.132698 + 0.868731I
3.36085 + 0.49947I 12.33273 0.13229I
u = 0.132698 0.868731I
3.36085 0.49947I 12.33273 + 0.13229I
u = 0.830272 + 0.762818I
2.92978 2.50596I 5.15377 + 2.93090I
u = 0.830272 0.762818I
2.92978 + 2.50596I 5.15377 2.93090I
u = 0.842291 + 0.783314I
1.03604 1.75419I 1.142381 + 0.318926I
u = 0.842291 0.783314I
1.03604 + 1.75419I 1.142381 0.318926I
u = 0.858015 + 0.778364I
2.29038 + 6.57620I 4.18692 3.44855I
u = 0.858015 0.778364I
2.29038 6.57620I 4.18692 + 3.44855I
u = 0.756645 + 0.885386I
1.40338 + 2.86651I 6.38250 2.83312I
u = 0.756645 0.885386I
1.40338 2.86651I 6.38250 + 2.83312I
u = 0.836690 + 0.850906I
5.01543 2.00642I 0.12467 + 3.31909I
u = 0.836690 0.850906I
5.01543 + 2.00642I 0.12467 3.31909I
u = 0.823694 + 0.876027I
6.13950 2.34478I 2.43085 + 2.90580I
u = 0.823694 0.876027I
6.13950 + 2.34478I 2.43085 2.90580I
u = 0.300266 + 0.727840I
0.31190 + 1.38897I 2.22878 5.19649I
u = 0.300266 0.727840I
0.31190 1.38897I 2.22878 + 5.19649I
u = 0.810647 + 0.914894I
6.01823 3.75969I 2.08469 + 2.66327I
u = 0.810647 0.914894I
6.01823 + 3.75969I 2.08469 2.66327I
u = 0.807712 + 0.939287I
4.74123 + 8.14027I 0.92451 8.45750I
u = 0.807712 0.939287I
4.74123 8.14027I 0.92451 + 8.45750I
u = 0.766003 + 0.985130I
3.60687 3.46651I 6.32048 + 2.17214I
u = 0.766003 0.985130I
3.60687 + 3.46651I 6.32048 2.17214I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.779460 + 0.981810I
0.42502 + 7.80969I 2.24693 5.23664I
u = 0.779460 0.981810I
0.42502 7.80969I 2.24693 + 5.23664I
u = 0.784350 + 0.990912I
2.94834 12.69200I 5.29244 + 8.24315I
u = 0.784350 0.990912I
2.94834 + 12.69200I 5.29244 8.24315I
u = 0.675007 + 0.033462I
6.66197 4.52417I 4.64346 + 3.30102I
u = 0.675007 0.033462I
6.66197 + 4.52417I 4.64346 3.30102I
u = 0.642653
3.07852 1.30900
u = 0.368440 + 0.507445I
0.258138 + 1.315180I 0.82726 5.55607I
u = 0.368440 0.507445I
0.258138 1.315180I 0.82726 + 5.55607I
u = 0.457128 + 0.246194I
0.38333 + 1.88364I 0.67137 3.86434I
u = 0.457128 0.246194I
0.38333 1.88364I 0.67137 + 3.86434I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
u
40
+ ··· + u + 1
c
2
u
41
+ 23u
40
+ ··· 3u 1
c
3
, c
6
, c
7
u
41
+ u
40
+ ··· 7u + 1
c
4
, c
9
u
41
+ u
40
+ ··· + u + 1
c
8
, c
10
, c
11
u
41
+ 11u
40
+ ··· 3u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 23y
40
+ ··· 3y 1
c
2
y
41
9y
40
+ ··· 19y 1
c
3
, c
6
, c
7
y
41
41y
40
+ ··· 51y 1
c
4
, c
9
y
41
+ 11y
40
+ ··· 3y 1
c
8
, c
10
, c
11
y
41
+ 39y
40
+ ··· 11y 1
8