11a
77
(K11a
77
)
A knot diagram
1
Linearized knot diagam
6 1 11 9 2 3 4 10 5 8 7
Solving Sequence
5,10
9 4 8 11 3 7 1 2 6
c
9
c
4
c
8
c
10
c
3
c
7
c
11
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
65
+ u
64
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
65
+ u
64
+ · · · u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
11
=
u
4
u
2
+ 1
u
4
a
3
=
u
11
2u
9
+ 4u
7
4u
5
+ 3u
3
2u
u
11
+ u
9
2u
7
+ u
5
u
3
+ u
a
7
=
u
6
+ u
4
2u
2
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
1
=
u
18
3u
16
+ 8u
14
13u
12
+ 17u
10
17u
8
+ 12u
6
6u
4
+ u
2
+ 1
u
20
4u
18
+ 10u
16
18u
14
+ 23u
12
24u
10
+ 18u
8
10u
6
+ 3u
4
a
2
=
u
49
+ 8u
47
+ ··· + 4u
3
u
u
51
+ 9u
49
+ ··· u
3
+ u
a
6
=
u
30
+ 5u
28
+ ··· 12u
6
+ 1
u
30
4u
28
+ ··· 2u
4
+ u
2
a
6
=
u
30
+ 5u
28
+ ··· 12u
6
+ 1
u
30
4u
28
+ ··· 2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
63
40u
61
+ ··· + 4u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
65
u
64
+ ··· + 3u 1
c
2
u
65
+ 31u
64
+ ··· + u 1
c
3
u
65
+ 7u
64
+ ··· + 1657u + 101
c
4
, c
9
u
65
+ u
64
+ ··· u 1
c
6
u
65
+ u
64
+ ··· 191u 37
c
7
u
65
u
64
+ ··· 7u 1
c
8
, c
10
u
65
21u
64
+ ··· + u 1
c
11
u
65
5u
64
+ ··· + 163u 21
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
65
+ 31y
64
+ ··· + y 1
c
2
y
65
+ 7y
64
+ ··· + 9y 1
c
3
y
65
+ 19y
64
+ ··· + 722417y 10201
c
4
, c
9
y
65
21y
64
+ ··· + y 1
c
6
y
65
17y
64
+ ··· + 2293y 1369
c
7
y
65
y
64
+ ··· + 33y 1
c
8
, c
10
y
65
+ 47y
64
+ ··· 7y 1
c
11
y
65
+ 11y
64
+ ··· 30047y 441
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.689365 + 0.726697I
1.58337 2.03293I 3.89738 + 3.26899I
u = 0.689365 0.726697I
1.58337 + 2.03293I 3.89738 3.26899I
u = 1.005880 + 0.157008I
0.41947 + 2.11288I 4.80416 3.07590I
u = 1.005880 0.157008I
0.41947 2.11288I 4.80416 + 3.07590I
u = 0.911421 + 0.476290I
0.02873 + 3.68623I 6.08412 2.12264I
u = 0.911421 0.476290I
0.02873 3.68623I 6.08412 + 2.12264I
u = 0.687792 + 0.769063I
0.78159 2.53862I 5.40480 + 3.10900I
u = 0.687792 0.769063I
0.78159 + 2.53862I 5.40480 3.10900I
u = 1.030140 + 0.058702I
3.90580 2.15177I 11.37394 + 2.20893I
u = 1.030140 0.058702I
3.90580 + 2.15177I 11.37394 2.20893I
u = 1.029380 + 0.089417I
5.09135 2.55649I 13.39578 + 4.21201I
u = 1.029380 0.089417I
5.09135 + 2.55649I 13.39578 4.21201I
u = 1.037970 + 0.135001I
4.01245 4.61295I 11.51833 + 4.52005I
u = 1.037970 0.135001I
4.01245 + 4.61295I 11.51833 4.52005I
u = 0.908964 + 0.523673I
1.93533 + 1.09584I 9.59662 2.36982I
u = 0.908964 0.523673I
1.93533 1.09584I 9.59662 + 2.36982I
u = 1.047290 + 0.147978I
1.79362 + 9.57441I 8.04394 8.42502I
u = 1.047290 0.147978I
1.79362 9.57441I 8.04394 + 8.42502I
u = 0.694570 + 0.806772I
2.33998 4.47857I 3.88200 + 0.I
u = 0.694570 0.806772I
2.33998 + 4.47857I 3.88200 + 0.I
u = 0.693732 + 0.817224I
4.71040 + 9.46363I 0. 5.96163I
u = 0.693732 0.817224I
4.71040 9.46363I 0. + 5.96163I
u = 0.855805 + 0.645921I
2.22679 2.52501I 0
u = 0.855805 0.645921I
2.22679 + 2.52501I 0
u = 0.714699 + 0.808408I
6.81733 + 1.64607I 0
u = 0.714699 0.808408I
6.81733 1.64607I 0
u = 0.786697 + 0.772614I
3.96704 1.98381I 0
u = 0.786697 0.772614I
3.96704 + 1.98381I 0
u = 0.770398 + 0.794763I
7.77271 1.28375I 0
u = 0.770398 0.794763I
7.77271 + 1.28375I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.946620 + 0.582707I
2.30161 + 3.09152I 0
u = 0.946620 0.582707I
2.30161 3.09152I 0
u = 0.843904 + 0.254405I
1.51926 2.99365I 3.32010 + 5.42677I
u = 0.843904 0.254405I
1.51926 + 2.99365I 3.32010 5.42677I
u = 0.800302 + 0.787738I
6.57059 + 6.52849I 0
u = 0.800302 0.787738I
6.57059 6.52849I 0
u = 0.966069 + 0.601492I
0.74043 7.86664I 0
u = 0.966069 0.601492I
0.74043 + 7.86664I 0
u = 0.944152 + 0.730238I
3.48204 3.70053I 0
u = 0.944152 0.730238I
3.48204 + 3.70053I 0
u = 0.937853 + 0.746992I
6.14634 0.74794I 0
u = 0.937853 0.746992I
6.14634 + 0.74794I 0
u = 0.800973
1.17985 8.77650
u = 0.990290 + 0.689258I
0.68502 3.40527I 0
u = 0.990290 0.689258I
0.68502 + 3.40527I 0
u = 0.962070 + 0.741300I
7.18458 + 7.06765I 0
u = 0.962070 0.741300I
7.18458 7.06765I 0
u = 0.999686 + 0.703361I
0.15648 + 8.12741I 0
u = 0.999686 0.703361I
0.15648 8.12741I 0
u = 0.999377 + 0.728906I
5.94902 7.42747I 0
u = 0.999377 0.728906I
5.94902 + 7.42747I 0
u = 1.008600 + 0.721373I
1.38595 + 10.22920I 0
u = 1.008600 0.721373I
1.38595 10.22920I 0
u = 1.012630 + 0.725752I
3.7395 15.2573I 0
u = 1.012630 0.725752I
3.7395 + 15.2573I 0
u = 0.448985 + 0.508256I
0.40000 + 3.37253I 3.73657 2.56528I
u = 0.448985 0.508256I
0.40000 3.37253I 3.73657 + 2.56528I
u = 0.163452 + 0.613583I
2.07374 7.24801I 0.44286 + 6.94914I
u = 0.163452 0.613583I
2.07374 + 7.24801I 0.44286 6.94914I
u = 0.173474 + 0.573585I
0.19197 + 2.46276I 3.81248 3.42438I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.173474 0.573585I
0.19197 2.46276I 3.81248 + 3.42438I
u = 0.088496 + 0.577660I
3.86299 + 0.19977I 3.23482 + 0.27466I
u = 0.088496 0.577660I
3.86299 0.19977I 3.23482 0.27466I
u = 0.302292 + 0.470945I
1.11205 + 0.99447I 6.38117 3.96144I
u = 0.302292 0.470945I
1.11205 0.99447I 6.38117 + 3.96144I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
65
u
64
+ ··· + 3u 1
c
2
u
65
+ 31u
64
+ ··· + u 1
c
3
u
65
+ 7u
64
+ ··· + 1657u + 101
c
4
, c
9
u
65
+ u
64
+ ··· u 1
c
6
u
65
+ u
64
+ ··· 191u 37
c
7
u
65
u
64
+ ··· 7u 1
c
8
, c
10
u
65
21u
64
+ ··· + u 1
c
11
u
65
5u
64
+ ··· + 163u 21
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
65
+ 31y
64
+ ··· + y 1
c
2
y
65
+ 7y
64
+ ··· + 9y 1
c
3
y
65
+ 19y
64
+ ··· + 722417y 10201
c
4
, c
9
y
65
21y
64
+ ··· + y 1
c
6
y
65
17y
64
+ ··· + 2293y 1369
c
7
y
65
y
64
+ ··· + 33y 1
c
8
, c
10
y
65
+ 47y
64
+ ··· 7y 1
c
11
y
65
+ 11y
64
+ ··· 30047y 441
9