11a
78
(K11a
78
)
A knot diagram
1
Linearized knot diagam
6 1 8 10 2 3 4 7 11 5 9
Solving Sequence
4,8 1,3
2 7 9 6 5 11 10
c
3
c
2
c
7
c
8
c
6
c
5
c
11
c
9
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
u
23
+ ··· + 4b + 1, u
24
+ u
23
+ ··· + 4a 5, u
25
+ 6u
23
+ ··· + u 1i
I
u
2
= h−4476694012u
39
10696306396u
38
+ ··· + 7868062579b + 9351862960,
1184460310u
39
263051448u
38
+ ··· + 605235583a 1972197779, u
40
+ u
39
+ ··· + 2u + 1i
I
u
3
= hb + a + 1, a
2
au + 2a u, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
24
u
23
+· · ·+4b+1, u
24
+u
23
+· · ·+4a5, u
25
+6u
23
+· · ·+u1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
1
4
u
24
1
4
u
23
+ ···
1
2
u +
5
4
1
4
u
24
+
1
4
u
23
+ ··· +
1
2
u
1
4
a
3
=
1
u
2
a
2
=
1
4
u
24
1
4
u
23
+ ···
1
2
u +
5
4
1
4
u
24
+
1
4
u
23
+ ··· +
1
2
u
1
4
a
7
=
u
u
a
9
=
u
3
u
3
+ u
a
6
=
u
3
u
5
+ u
3
+ u
a
5
=
1
4
u
24
+
1
4
u
23
+ ··· u
1
4
1
4
u
24
1
4
u
23
+ ··· + u +
1
4
a
11
=
1
2
u
24
1
2
u
23
+ ··· u +
3
2
1
4
u
24
+
1
4
u
23
+ ··· +
1
2
u
1
4
a
10
=
5
4
u
24
+
5
4
u
23
+ ··· u
9
4
1
2
u
24
1
2
u
23
+ ··· + u + 1
a
10
=
5
4
u
24
+
5
4
u
23
+ ··· u
9
4
1
2
u
24
1
2
u
23
+ ··· + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
24
+ u
23
18u
22
+ 11u
21
60u
20
+ 44u
19
127u
18
+
110u
17
194u
16
+ 179u
15
221u
14
+ 213u
13
204u
12
+ 178u
11
159u
10
+ 120u
9
111u
8
+ 65u
7
70u
6
+ 53u
5
34u
4
+ 32u
3
17u
2
+ 10u 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
u
25
+ 6u
23
+ ··· + u + 1
c
2
, c
8
u
25
+ 12u
24
+ ··· 5u 1
c
4
, c
10
u
25
3u
24
+ ··· 5u + 2
c
6
u
25
+ 3u
24
+ ··· + 16u + 32
c
9
, c
11
u
25
+ 9u
24
+ ··· 7u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
7
y
25
+ 12y
24
+ ··· 5y 1
c
2
, c
8
y
25
+ 8y
24
+ ··· + 3y 1
c
4
, c
10
y
25
9y
24
+ ··· 7y 4
c
6
y
25
11y
24
+ ··· 13568y 1024
c
9
, c
11
y
25
+ 15y
24
+ ··· + 273y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668066 + 0.826958I
a = 0.391410 + 0.121275I
b = 0.010569 0.701256I
4.42357 2.28876I 0.90025 + 3.22916I
u = 0.668066 0.826958I
a = 0.391410 0.121275I
b = 0.010569 + 0.701256I
4.42357 + 2.28876I 0.90025 3.22916I
u = 0.387315 + 0.828510I
a = 0.057213 1.406030I
b = 0.39665 + 1.35928I
2.29786 + 4.38512I 6.23003 9.05656I
u = 0.387315 0.828510I
a = 0.057213 + 1.406030I
b = 0.39665 1.35928I
2.29786 4.38512I 6.23003 + 9.05656I
u = 0.663122 + 0.885711I
a = 0.620402 0.123885I
b = 0.014657 + 0.488612I
4.05826 + 8.02736I 0.26249 8.69949I
u = 0.663122 0.885711I
a = 0.620402 + 0.123885I
b = 0.014657 0.488612I
4.05826 8.02736I 0.26249 + 8.69949I
u = 0.781060 + 0.295309I
a = 0.725790 + 0.096907I
b = 0.857621 + 0.846789I
2.49934 5.05647I 0.76088 + 3.39553I
u = 0.781060 0.295309I
a = 0.725790 0.096907I
b = 0.857621 0.846789I
2.49934 + 5.05647I 0.76088 3.39553I
u = 0.732724 + 0.365786I
a = 0.646963 0.060825I
b = 0.631263 0.907356I
3.32057 0.44324I 2.54503 + 2.33373I
u = 0.732724 0.365786I
a = 0.646963 + 0.060825I
b = 0.631263 + 0.907356I
3.32057 + 0.44324I 2.54503 2.33373I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.440401 + 1.120690I
a = 2.18870 + 1.03108I
b = 2.28016 + 0.07839I
4.91803 1.59228I 7.91949 + 2.30620I
u = 0.440401 1.120690I
a = 2.18870 1.03108I
b = 2.28016 0.07839I
4.91803 + 1.59228I 7.91949 2.30620I
u = 0.496157 + 1.112700I
a = 1.97870 0.70710I
b = 1.75155 0.37924I
2.95653 + 6.50680I 4.30037 6.80019I
u = 0.496157 1.112700I
a = 1.97870 + 0.70710I
b = 1.75155 + 0.37924I
2.95653 6.50680I 4.30037 + 6.80019I
u = 0.447856 + 0.612567I
a = 0.505867 + 0.568532I
b = 0.048924 0.925546I
0.53657 1.46473I 1.57744 + 4.49882I
u = 0.447856 0.612567I
a = 0.505867 0.568532I
b = 0.048924 + 0.925546I
0.53657 + 1.46473I 1.57744 4.49882I
u = 0.502100 + 1.180640I
a = 2.34071 + 0.47753I
b = 2.09699 + 1.04430I
8.02282 8.65791I 10.60850 + 6.91846I
u = 0.502100 1.180640I
a = 2.34071 0.47753I
b = 2.09699 1.04430I
8.02282 + 8.65791I 10.60850 6.91846I
u = 0.562594 + 1.178700I
a = 2.15539 0.17720I
b = 1.47455 1.34225I
1.63771 + 9.61928I 3.84139 5.85883I
u = 0.562594 1.178700I
a = 2.15539 + 0.17720I
b = 1.47455 + 1.34225I
1.63771 9.61928I 3.84139 + 5.85883I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.147311 + 0.674791I
a = 1.71030 0.90481I
b = 0.995418 + 0.931192I
1.78656 1.53483I 3.61707 + 0.13208I
u = 0.147311 0.674791I
a = 1.71030 + 0.90481I
b = 0.995418 0.931192I
1.78656 + 1.53483I 3.61707 0.13208I
u = 0.562275 + 1.202520I
a = 2.27068 + 0.11315I
b = 1.58876 + 1.59048I
2.9757 15.3316I 5.87847 + 10.26197I
u = 0.562275 1.202520I
a = 2.27068 0.11315I
b = 1.58876 1.59048I
2.9757 + 15.3316I 5.87847 10.26197I
u = 0.631724
a = 0.828591
b = 0.729746
1.87036 4.25160
7
II.
I
u
2
= h−4.48 × 10
9
u
39
1.07 × 10
10
u
38
+ · · · + 7.87× 10
9
b + 9.35 ×10
9
, 1.18 ×
10
9
u
39
2.63× 10
8
u
38
+ · · · + 6.05 × 10
8
a 1.97 × 10
9
, u
40
+ u
39
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
1.95702u
39
+ 0.434627u
38
+ ··· 0.306306u + 3.25856
0.568970u
39
+ 1.35946u
38
+ ··· + 0.868382u 1.18859
a
3
=
1
u
2
a
2
=
2.52599u
39
+ 1.79409u
38
+ ··· + 0.562076u + 3.06998
1.08110u
39
0.476540u
38
+ ··· 0.632572u 3.87864
a
7
=
u
u
a
9
=
u
3
u
3
+ u
a
6
=
u
3
u
5
+ u
3
+ u
a
5
=
1.92049u
39
1.64843u
38
+ ··· 4.76213u 5.77155
2.08550u
39
1.17361u
38
+ ··· 1.60565u 2.79806
a
11
=
2.26791u
39
0.119746u
38
+ ··· 1.61688u + 3.05922
0.653801u
39
+ 0.802602u
38
+ ··· + 0.806017u 3.07474
a
10
=
2.49055u
39
0.832197u
38
+ ··· 2.76553u 7.09778
1.67912u
39
1.52806u
38
+ ··· 2.35663u 1.41907
a
10
=
2.49055u
39
0.832197u
38
+ ··· 2.76553u 7.09778
1.67912u
39
1.52806u
38
+ ··· 2.35663u 1.41907
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
51184596416
7868062579
u
39
71297250008
7868062579
u
38
+ ···
117349868140
7868062579
u
113505824050
7868062579
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
u
40
u
39
+ ··· 2u + 1
c
2
, c
8
u
40
+ 23u
39
+ ··· 16u
2
+ 1
c
4
, c
10
(u
20
+ u
19
+ ··· + 3u
2
1)
2
c
6
(u
20
u
19
+ ··· + 4u 1)
2
c
9
, c
11
(u
20
+ 7u
19
+ ··· + 6u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
7
y
40
+ 23y
39
+ ··· 16y
2
+ 1
c
2
, c
8
y
40
13y
39
+ ··· 32y + 1
c
4
, c
10
(y
20
7y
19
+ ··· 6y + 1)
2
c
6
(y
20
11y
19
+ ··· 6y + 1)
2
c
9
, c
11
(y
20
+ 13y
19
+ ··· 6y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.680660 + 0.735978I
a = 1.061240 0.028188I
b = 0.0630213 0.1220620I
4.68486 2.84648I 1.60998 + 2.97861I
u = 0.680660 0.735978I
a = 1.061240 + 0.028188I
b = 0.0630213 + 0.1220620I
4.68486 + 2.84648I 1.60998 2.97861I
u = 0.703070 + 0.667774I
a = 0.935371 + 0.031857I
b = 0.0630213 0.1220620I
4.68486 2.84648I 1.60998 + 2.97861I
u = 0.703070 0.667774I
a = 0.935371 0.031857I
b = 0.0630213 + 0.1220620I
4.68486 + 2.84648I 1.60998 2.97861I
u = 0.179409 + 1.047170I
a = 1.007340 0.708627I
b = 0.274077
3.97005 10.76209 + 0.I
u = 0.179409 1.047170I
a = 1.007340 + 0.708627I
b = 0.274077
3.97005 10.76209 + 0.I
u = 0.406752 + 0.984604I
a = 1.305660 0.307787I
b = 0.994955 0.489591I
0.52569 2.16136I 0.73748 + 3.31855I
u = 0.406752 0.984604I
a = 1.305660 + 0.307787I
b = 0.994955 + 0.489591I
0.52569 + 2.16136I 0.73748 3.31855I
u = 0.883398 + 0.214209I
a = 0.296276 0.096762I
b = 1.25336 + 1.31067I
0.00745 + 10.05770I 2.70834 7.26612I
u = 0.883398 0.214209I
a = 0.296276 + 0.096762I
b = 1.25336 1.31067I
0.00745 10.05770I 2.70834 + 7.26612I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.847173 + 0.247485I
a = 0.164766 + 0.157989I
b = 1.09019 1.18394I
1.14075 4.43308I 0.68370 + 2.52728I
u = 0.847173 0.247485I
a = 0.164766 0.157989I
b = 1.09019 + 1.18394I
1.14075 + 4.43308I 0.68370 2.52728I
u = 0.240047 + 1.118770I
a = 1.126200 + 0.481500I
b = 1.340740 + 0.080597I
2.02098 2.13456I 4.50898 + 2.16962I
u = 0.240047 1.118770I
a = 1.126200 0.481500I
b = 1.340740 0.080597I
2.02098 + 2.13456I 4.50898 2.16962I
u = 0.416062 + 1.082120I
a = 1.36848 1.28995I
b = 1.070070 0.629261I
3.61438 + 0.81573I 5.67172 1.07888I
u = 0.416062 1.082120I
a = 1.36848 + 1.28995I
b = 1.070070 + 0.629261I
3.61438 0.81573I 5.67172 + 1.07888I
u = 0.017851 + 1.176950I
a = 0.345233 0.405044I
b = 0.710796 + 0.321114I
1.62333 2.35832I 2.35225 + 4.49783I
u = 0.017851 1.176950I
a = 0.345233 + 0.405044I
b = 0.710796 0.321114I
1.62333 + 2.35832I 2.35225 4.49783I
u = 0.460657 + 1.121820I
a = 1.40263 + 1.43442I
b = 1.42212 + 0.74562I
4.77271 6.07240I 7.45285 + 5.87540I
u = 0.460657 1.121820I
a = 1.40263 1.43442I
b = 1.42212 0.74562I
4.77271 + 6.07240I 7.45285 5.87540I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.771680 + 0.120837I
a = 0.436638 0.516967I
b = 1.45055 + 0.79305I
4.94645 + 3.96853I 7.89349 3.79787I
u = 0.771680 0.120837I
a = 0.436638 + 0.516967I
b = 1.45055 0.79305I
4.94645 3.96853I 7.89349 + 3.79787I
u = 0.444139 + 1.139190I
a = 1.44372 + 0.43742I
b = 1.45055 + 0.79305I
4.94645 + 3.96853I 7.89349 3.79787I
u = 0.444139 1.139190I
a = 1.44372 0.43742I
b = 1.45055 0.79305I
4.94645 3.96853I 7.89349 + 3.79787I
u = 0.551606 + 1.104560I
a = 1.52922 0.28411I
b = 1.09019 1.18394I
1.14075 4.43308I 0.68370 + 2.52728I
u = 0.551606 1.104560I
a = 1.52922 + 0.28411I
b = 1.09019 + 1.18394I
1.14075 + 4.43308I 0.68370 2.52728I
u = 0.386163 + 1.203070I
a = 1.11143 + 1.51116I
b = 1.54877
8.84775 12.44026 + 0.I
u = 0.386163 1.203070I
a = 1.11143 1.51116I
b = 1.54877
8.84775 12.44026 + 0.I
u = 0.276270 + 1.238300I
a = 0.75891 1.40625I
b = 1.070070 + 0.629261I
3.61438 0.81573I 5.67172 + 1.07888I
u = 0.276270 1.238300I
a = 0.75891 + 1.40625I
b = 1.070070 0.629261I
3.61438 + 0.81573I 5.67172 1.07888I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.555192 + 1.143400I
a = 1.58253 + 0.32035I
b = 1.25336 + 1.31067I
0.00745 + 10.05770I 3.00000 7.26612I
u = 0.555192 1.143400I
a = 1.58253 0.32035I
b = 1.25336 1.31067I
0.00745 10.05770I 3.00000 + 7.26612I
u = 0.312447 + 1.274980I
a = 0.79278 + 1.57779I
b = 1.42212 0.74562I
4.77271 + 6.07240I 7.45285 5.87540I
u = 0.312447 1.274980I
a = 0.79278 1.57779I
b = 1.42212 + 0.74562I
4.77271 6.07240I 7.45285 + 5.87540I
u = 0.605286 + 0.255049I
a = 0.207408 + 0.820889I
b = 0.994955 0.489591I
0.52569 2.16136I 0.73748 + 3.31855I
u = 0.605286 0.255049I
a = 0.207408 0.820889I
b = 0.994955 + 0.489591I
0.52569 + 2.16136I 0.73748 3.31855I
u = 0.219360 + 0.513597I
a = 2.33551 0.75634I
b = 0.710796 0.321114I
1.62333 + 2.35832I 2.35225 4.49783I
u = 0.219360 0.513597I
a = 2.33551 + 0.75634I
b = 0.710796 + 0.321114I
1.62333 2.35832I 2.35225 + 4.49783I
u = 0.514794 + 0.049169I
a = 0.86181 + 1.57235I
b = 1.340740 0.080597I
2.02098 + 2.13456I 4.50898 2.16962I
u = 0.514794 0.049169I
a = 0.86181 1.57235I
b = 1.340740 + 0.080597I
2.02098 2.13456I 4.50898 + 2.16962I
14
III. I
u
3
= hb + a + 1, a
2
au + 2a u, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
a
a 1
a
3
=
1
1
a
2
=
a + 1
a 2
a
7
=
u
u
a
9
=
u
0
a
6
=
u
u
a
5
=
au
au u
a
11
=
2a + 1
a 1
a
10
=
au + 2a + 2
a + u 1
a
10
=
au + 2a + 2
a + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au 4u 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
(u
2
+ 1)
2
c
2
, c
8
(u + 1)
4
c
4
, c
10
u
4
u
2
+ 1
c
6
u
4
c
9
(u
2
u + 1)
2
c
11
(u
2
+ u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
7
(y + 1)
4
c
2
, c
8
(y 1)
4
c
4
, c
10
(y
2
y + 1)
2
c
6
y
4
c
9
, c
11
(y
2
+ y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.133975 + 0.500000I
b = 0.866025 0.500000I
3.28987 + 2.02988I 10.00000 3.46410I
u = 1.000000I
a = 1.86603 + 0.50000I
b = 0.866025 0.500000I
3.28987 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 0.133975 0.500000I
b = 0.866025 + 0.500000I
3.28987 2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 1.86603 0.50000I
b = 0.866025 + 0.500000I
3.28987 + 2.02988I 10.00000 3.46410I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
((u
2
+ 1)
2
)(u
25
+ 6u
23
+ ··· + u + 1)(u
40
u
39
+ ··· 2u + 1)
c
2
, c
8
((u + 1)
4
)(u
25
+ 12u
24
+ ··· 5u 1)(u
40
+ 23u
39
+ ··· 16u
2
+ 1)
c
4
, c
10
(u
4
u
2
+ 1)(u
20
+ u
19
+ ··· + 3u
2
1)
2
(u
25
3u
24
+ ··· 5u + 2)
c
6
u
4
(u
20
u
19
+ ··· + 4u 1)
2
(u
25
+ 3u
24
+ ··· + 16u + 32)
c
9
((u
2
u + 1)
2
)(u
20
+ 7u
19
+ ··· + 6u + 1)
2
(u
25
+ 9u
24
+ ··· 7u + 4)
c
11
((u
2
+ u + 1)
2
)(u
20
+ 7u
19
+ ··· + 6u + 1)
2
(u
25
+ 9u
24
+ ··· 7u + 4)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
7
((y + 1)
4
)(y
25
+ 12y
24
+ ··· 5y 1)(y
40
+ 23y
39
+ ··· 16y
2
+ 1)
c
2
, c
8
((y 1)
4
)(y
25
+ 8y
24
+ ··· + 3y 1)(y
40
13y
39
+ ··· 32y + 1)
c
4
, c
10
((y
2
y + 1)
2
)(y
20
7y
19
+ ··· 6y + 1)
2
(y
25
9y
24
+ ··· 7y 4)
c
6
y
4
(y
20
11y
19
+ ··· 6y + 1)
2
(y
25
11y
24
+ ··· 13568y 1024)
c
9
, c
11
((y
2
+ y + 1)
2
)(y
20
+ 13y
19
+ ··· 6y + 1)
2
· (y
25
+ 15y
24
+ ··· + 273y 16)
20