11a
80
(K11a
80
)
A knot diagram
1
Linearized knot diagam
6 1 9 10 2 3 4 11 7 8 5
Solving Sequence
2,5
6 1 3
8,11
9 10 4 7
c
5
c
1
c
2
c
11
c
8
c
10
c
4
c
7
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.10807 × 10
23
u
69
+ 2.13624 × 10
23
u
68
+ ··· + 3.25909 × 10
22
b + 1.02987 × 10
23
,
7.69171 × 10
22
u
69
4.41119 × 10
22
u
68
+ ··· + 3.25909 × 10
22
a 4.48719 × 10
22
, u
70
2u
69
+ ··· 5u + 1i
I
u
2
= hb + 2u 1, a 2, u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.11×10
23
u
69
+2.14×10
23
u
68
+· · ·+3.26×10
22
b+1.03×10
23
, 7.69×
10
22
u
69
4.41×10
22
u
68
+· · ·+3.26×10
22
a4.49×10
22
, u
70
2u
69
+· · ·5u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
8
=
2.36008u
69
+ 1.35350u
68
+ ··· + 2.96444u + 1.37682
3.39992u
69
6.55471u
68
+ ··· + 15.8232u 3.16000
a
11
=
u
3
u
3
+ u
a
9
=
2.36035u
69
+ 1.58814u
68
+ ··· + 2.07836u + 1.59404
3.19965u
69
6.13729u
68
+ ··· + 14.0060u 2.96000
a
10
=
2.55997u
69
1.82063u
68
+ ··· 3.25615u 1.70993
3.20003u
69
+ 6.36373u
68
+ ··· 14.8901u + 3.16000
a
4
=
6.40571u
69
13.1764u
68
+ ··· + 34.5221u 3.44819
1.36498u
69
+ 3.63005u
68
+ ··· 22.5376u + 5.79503
a
7
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
7
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
80166540663254872590873
10863644501129272985843
u
69
390207808448510879557707
10863644501129272985843
u
68
+ ··· +
1547885087409440226722281
10863644501129272985843
u
321339458068418410398408
10863644501129272985843
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
70
2u
69
+ ··· 5u + 1
c
2
u
70
+ 38u
69
+ ··· u + 1
c
3
u
70
+ 2u
69
+ ··· + 23u + 107
c
4
u
70
+ 31u
68
+ ··· 13u + 1
c
6
, c
11
u
70
+ 2u
69
+ ··· 169u + 17
c
7
u
70
2u
69
+ ··· u + 1
c
8
, c
10
u
70
+ 3u
69
+ ··· 4u + 1
c
9
u
70
11u
69
+ ··· + 4u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
70
+ 38y
69
+ ··· y + 1
c
2
y
70
10y
69
+ ··· 93y + 1
c
3
y
70
+ 70y
69
+ ··· + 344439y + 11449
c
4
y
70
+ 62y
69
+ ··· + 127y + 1
c
6
, c
11
y
70
58y
69
+ ··· 16865y + 289
c
7
y
70
10y
69
+ ··· y + 1
c
8
, c
10
y
70
41y
69
+ ··· + 16y + 1
c
9
y
70
15y
69
+ ··· 200y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.629527 + 0.806981I
a = 1.41570 0.09923I
b = 0.33030 1.77174I
1.04825 + 2.45107I 0
u = 0.629527 0.806981I
a = 1.41570 + 0.09923I
b = 0.33030 + 1.77174I
1.04825 2.45107I 0
u = 0.067651 + 1.027570I
a = 0.485648 + 1.262690I
b = 0.577177 + 0.334792I
3.59009 + 0.96831I 0
u = 0.067651 1.027570I
a = 0.485648 1.262690I
b = 0.577177 0.334792I
3.59009 0.96831I 0
u = 0.384830 + 0.888904I
a = 0.644025 + 0.369584I
b = 0.586602 0.314795I
0.32453 + 1.95228I 0. 3.30692I
u = 0.384830 0.888904I
a = 0.644025 0.369584I
b = 0.586602 + 0.314795I
0.32453 1.95228I 0. + 3.30692I
u = 0.479076 + 0.914334I
a = 0.835502 0.636450I
b = 0.0502703 0.0626528I
0.79732 5.73779I 0
u = 0.479076 0.914334I
a = 0.835502 + 0.636450I
b = 0.0502703 + 0.0626528I
0.79732 + 5.73779I 0
u = 0.463852 + 0.816066I
a = 1.03712 1.14502I
b = 0.065861 + 1.165360I
3.32585 3.64623I 8.36983 + 8.12955I
u = 0.463852 0.816066I
a = 1.03712 + 1.14502I
b = 0.065861 1.165360I
3.32585 + 3.64623I 8.36983 8.12955I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.584393 + 0.923619I
a = 2.09703 + 0.21211I
b = 0.57442 1.93822I
3.25750 10.82580I 0
u = 0.584393 0.923619I
a = 2.09703 0.21211I
b = 0.57442 + 1.93822I
3.25750 + 10.82580I 0
u = 0.377490 + 0.808869I
a = 4.46362 0.46805I
b = 0.09813 + 3.87415I
1.50422 + 1.66288I 31.1505 + 27.2219I
u = 0.377490 0.808869I
a = 4.46362 + 0.46805I
b = 0.09813 3.87415I
1.50422 1.66288I 31.1505 27.2219I
u = 0.653862 + 0.578775I
a = 0.775452 + 0.290765I
b = 0.31099 1.84334I
4.24693 + 6.03843I 5.38503 4.49312I
u = 0.653862 0.578775I
a = 0.775452 0.290765I
b = 0.31099 + 1.84334I
4.24693 6.03843I 5.38503 + 4.49312I
u = 0.851538 + 0.139959I
a = 1.044180 0.205566I
b = 1.12487 1.81917I
0.99836 11.50700I 1.84093 + 6.73084I
u = 0.851538 0.139959I
a = 1.044180 + 0.205566I
b = 1.12487 + 1.81917I
0.99836 + 11.50700I 1.84093 6.73084I
u = 0.060029 + 1.146880I
a = 0.18745 + 2.16143I
b = 0.299074 + 1.201650I
1.44288 + 5.44607I 0
u = 0.060029 1.146880I
a = 0.18745 2.16143I
b = 0.299074 1.201650I
1.44288 5.44607I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.830885 + 0.169788I
a = 0.885873 0.209106I
b = 1.24593 1.41968I
2.35547 + 3.73849I 0.65968 5.52505I
u = 0.830885 0.169788I
a = 0.885873 + 0.209106I
b = 1.24593 + 1.41968I
2.35547 3.73849I 0.65968 + 5.52505I
u = 0.844269 + 0.045265I
a = 0.529036 0.217259I
b = 0.438531 + 0.049854I
3.62841 + 0.20387I 2.37460 + 1.94241I
u = 0.844269 0.045265I
a = 0.529036 + 0.217259I
b = 0.438531 0.049854I
3.62841 0.20387I 2.37460 1.94241I
u = 0.696611 + 0.477869I
a = 0.242169 + 0.044656I
b = 0.23295 1.56391I
3.77878 + 3.85148I 5.41405 7.02923I
u = 0.696611 0.477869I
a = 0.242169 0.044656I
b = 0.23295 + 1.56391I
3.77878 3.85148I 5.41405 + 7.02923I
u = 0.441288 + 0.716327I
a = 1.55504 1.61375I
b = 0.220804 + 0.919376I
3.62277 0.21985I 9.90987 + 0.81181I
u = 0.441288 0.716327I
a = 1.55504 + 1.61375I
b = 0.220804 0.919376I
3.62277 + 0.21985I 9.90987 0.81181I
u = 0.589180 + 1.012730I
a = 2.20968 0.22515I
b = 0.60519 1.40546I
2.24373 + 1.06051I 0
u = 0.589180 1.012730I
a = 2.20968 + 0.22515I
b = 0.60519 + 1.40546I
2.24373 1.06051I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.816520 + 0.092061I
a = 0.246027 0.625616I
b = 0.227076 + 0.411053I
4.47780 5.27299I 1.13386 + 5.09920I
u = 0.816520 0.092061I
a = 0.246027 + 0.625616I
b = 0.227076 0.411053I
4.47780 + 5.27299I 1.13386 5.09920I
u = 0.155133 + 0.771122I
a = 1.09854 0.97547I
b = 0.000848 1.218090I
0.526876 + 1.304500I 2.10750 3.09155I
u = 0.155133 0.771122I
a = 1.09854 + 0.97547I
b = 0.000848 + 1.218090I
0.526876 1.304500I 2.10750 + 3.09155I
u = 0.751358 + 0.033892I
a = 1.004370 + 0.873364I
b = 0.74452 + 2.95488I
0.708262 + 0.627776I 0.33072 + 10.74054I
u = 0.751358 0.033892I
a = 1.004370 0.873364I
b = 0.74452 2.95488I
0.708262 0.627776I 0.33072 10.74054I
u = 0.741533 + 0.089293I
a = 0.873738 0.398690I
b = 0.309943 + 1.288770I
0.80687 3.39629I 5.02552 + 6.06179I
u = 0.741533 0.089293I
a = 0.873738 + 0.398690I
b = 0.309943 1.288770I
0.80687 + 3.39629I 5.02552 6.06179I
u = 0.457271 + 1.166860I
a = 2.33391 0.73724I
b = 0.832098 + 0.217701I
0.90108 + 4.15644I 0
u = 0.457271 1.166860I
a = 2.33391 + 0.73724I
b = 0.832098 0.217701I
0.90108 4.15644I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.420042 + 1.181250I
a = 0.283873 1.352310I
b = 0.459172 1.228100I
2.80139 + 0.62222I 0
u = 0.420042 1.181250I
a = 0.283873 + 1.352310I
b = 0.459172 + 1.228100I
2.80139 0.62222I 0
u = 0.441328 + 1.192850I
a = 0.53713 4.16968I
b = 1.05472 2.74195I
4.22443 3.62054I 0
u = 0.441328 1.192850I
a = 0.53713 + 4.16968I
b = 1.05472 + 2.74195I
4.22443 + 3.62054I 0
u = 0.359060 + 1.223280I
a = 1.37931 + 2.37042I
b = 1.29014 + 1.14965I
6.61992 0.21045I 0
u = 0.359060 1.223280I
a = 1.37931 2.37042I
b = 1.29014 1.14965I
6.61992 + 0.21045I 0
u = 0.482887 + 1.183360I
a = 2.25253 + 0.52090I
b = 0.35025 + 1.40847I
2.35077 + 7.93022I 0
u = 0.482887 1.183360I
a = 2.25253 0.52090I
b = 0.35025 1.40847I
2.35077 7.93022I 0
u = 0.466698 + 1.191900I
a = 4.54250 + 2.63619I
b = 0.94499 + 3.21611I
4.04232 5.06949I 0
u = 0.466698 1.191900I
a = 4.54250 2.63619I
b = 0.94499 3.21611I
4.04232 + 5.06949I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.407480 + 1.222900I
a = 0.1138890 0.0689488I
b = 0.380064 0.448611I
8.41392 1.04197I 0
u = 0.407480 1.222900I
a = 0.1138890 + 0.0689488I
b = 0.380064 + 0.448611I
8.41392 + 1.04197I 0
u = 0.373837 + 1.243620I
a = 1.02834 + 2.75293I
b = 1.16246 + 1.65065I
5.26246 7.34394I 0
u = 0.373837 1.243620I
a = 1.02834 2.75293I
b = 1.16246 1.65065I
5.26246 + 7.34394I 0
u = 0.496707 + 1.207980I
a = 0.337756 0.265720I
b = 0.173373 + 0.523060I
7.77710 + 10.05510I 0
u = 0.496707 1.207980I
a = 0.337756 + 0.265720I
b = 0.173373 0.523060I
7.77710 10.05510I 0
u = 0.529273 + 1.198990I
a = 3.19515 0.09398I
b = 1.41652 1.47211I
5.41659 8.73511I 0
u = 0.529273 1.198990I
a = 3.19515 + 0.09398I
b = 1.41652 + 1.47211I
5.41659 + 8.73511I 0
u = 0.429294 + 1.241130I
a = 0.746467 + 0.490350I
b = 0.261834 0.041559I
7.52357 4.28857I 0
u = 0.429294 1.241130I
a = 0.746467 0.490350I
b = 0.261834 + 0.041559I
7.52357 + 4.28857I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482173 + 1.223350I
a = 0.689773 + 0.346822I
b = 0.471666 + 0.181421I
7.14118 4.96161I 0
u = 0.482173 1.223350I
a = 0.689773 0.346822I
b = 0.471666 0.181421I
7.14118 + 4.96161I 0
u = 0.522937 + 1.211780I
a = 3.48715 0.59028I
b = 1.23167 1.87815I
4.1996 + 16.5161I 0
u = 0.522937 1.211780I
a = 3.48715 + 0.59028I
b = 1.23167 + 1.87815I
4.1996 16.5161I 0
u = 0.442791 + 0.496185I
a = 0.799445 0.541455I
b = 0.011200 0.386745I
0.30075 + 1.79611I 2.68640 3.79960I
u = 0.442791 0.496185I
a = 0.799445 + 0.541455I
b = 0.011200 + 0.386745I
0.30075 1.79611I 2.68640 + 3.79960I
u = 0.316117 + 0.579912I
a = 0.878662 0.498135I
b = 0.214555 0.695078I
0.42343 + 1.35672I 2.64097 4.74847I
u = 0.316117 0.579912I
a = 0.878662 + 0.498135I
b = 0.214555 + 0.695078I
0.42343 1.35672I 2.64097 + 4.74847I
u = 0.643531
a = 1.80099
b = 0.494211
2.26336 7.42670
u = 0.331630
a = 3.33367
b = 0.275880
2.41420 4.13220
11
II. I
u
2
= hb + 2u 1, a 2, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
1
=
u
u 1
a
3
=
1
0
a
8
=
2
2u + 1
a
11
=
1
u 1
a
9
=
1
u
a
10
=
1
u
a
4
=
u + 1
u + 1
a
7
=
u
u + 1
a
7
=
u
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
u
2
+ u + 1
c
5
, c
11
u
2
u + 1
c
8
(u + 1)
2
c
9
u
2
c
10
(u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
11
y
2
+ y + 1
c
8
, c
10
(y 1)
2
c
9
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 2.00000
b = 1.73205I
1.64493 + 2.02988I 3.00000 3.46410I
u = 0.500000 0.866025I
a = 2.00000
b = 1.73205I
1.64493 2.02988I 3.00000 + 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)(u
70
2u
69
+ ··· 5u + 1)
c
2
(u
2
+ u + 1)(u
70
+ 38u
69
+ ··· u + 1)
c
3
(u
2
+ u + 1)(u
70
+ 2u
69
+ ··· + 23u + 107)
c
4
(u
2
+ u + 1)(u
70
+ 31u
68
+ ··· 13u + 1)
c
5
(u
2
u + 1)(u
70
2u
69
+ ··· 5u + 1)
c
6
(u
2
+ u + 1)(u
70
+ 2u
69
+ ··· 169u + 17)
c
7
(u
2
+ u + 1)(u
70
2u
69
+ ··· u + 1)
c
8
((u + 1)
2
)(u
70
+ 3u
69
+ ··· 4u + 1)
c
9
u
2
(u
70
11u
69
+ ··· + 4u + 4)
c
10
((u 1)
2
)(u
70
+ 3u
69
+ ··· 4u + 1)
c
11
(u
2
u + 1)(u
70
+ 2u
69
+ ··· 169u + 17)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
+ y + 1)(y
70
+ 38y
69
+ ··· y + 1)
c
2
(y
2
+ y + 1)(y
70
10y
69
+ ··· 93y + 1)
c
3
(y
2
+ y + 1)(y
70
+ 70y
69
+ ··· + 344439y + 11449)
c
4
(y
2
+ y + 1)(y
70
+ 62y
69
+ ··· + 127y + 1)
c
6
, c
11
(y
2
+ y + 1)(y
70
58y
69
+ ··· 16865y + 289)
c
7
(y
2
+ y + 1)(y
70
10y
69
+ ··· y + 1)
c
8
, c
10
((y 1)
2
)(y
70
41y
69
+ ··· + 16y + 1)
c
9
y
2
(y
70
15y
69
+ ··· 200y + 16)
17