11a
81
(K11a
81
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 2 3 4 11 7 8 5
Solving Sequence
2,6
1 3
7,9
10 5 4 11 8
c
1
c
2
c
6
c
9
c
5
c
4
c
11
c
8
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.12437 × 10
21
u
64
+ 2.08104 × 10
21
u
63
+ ··· + 3.92161 × 10
20
b 9.56908 × 10
20
,
6.77960 × 10
19
u
64
7.94718 × 10
20
u
63
+ ··· + 3.92161 × 10
20
a + 1.89541 × 10
21
, u
65
+ 2u
64
+ ··· + u 1i
I
u
2
= hb + u, a u 1, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.12 × 10
21
u
64
+ 2.08 × 10
21
u
63
+ · · · + 3.92 × 10
20
b 9.57 × 10
20
, 6.78 ×
10
19
u
64
7.95×10
20
u
63
+· · ·+3.92×10
20
a+1.90×10
21
, u
65
+2u
64
+· · ·+u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
4
a
7
=
u
5
2u
3
u
u
7
u
5
+ u
a
9
=
0.172878u
64
+ 2.02651u
63
+ ··· + 2.31811u 4.83325
2.86712u
64
5.30659u
63
+ ··· + 1.95308u + 2.44009
a
10
=
0.142247u
64
+ 2.05786u
63
+ ··· + 1.94975u 4.74893
2.69775u
64
4.93896u
63
+ ··· + 2.26672u + 2.24110
a
5
=
u
u
a
4
=
5.04000u
64
+ 5.88259u
63
+ ··· 11.8961u + 0.0715256
0.371835u
64
+ 4.36917u
63
+ ··· + 11.7089u 4.79741
a
11
=
u
4
+ u
2
+ 1
u
4
a
8
=
0.206126u
64
+ 1.99373u
63
+ ··· + 3.07367u 4.01687
3.03387u
64
5.47353u
63
+ ··· + 2.13727u + 2.43980
a
8
=
0.206126u
64
+ 1.99373u
63
+ ··· + 3.07367u 4.01687
3.03387u
64
5.47353u
63
+ ··· + 2.13727u + 2.43980
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3365010802379045894269
392161237007130374129
u
64
314262698830792944879
392161237007130374129
u
63
+ ··· +
15377811800569051171877
392161237007130374129
u
7348835260697976503736
392161237007130374129
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
65
2u
64
+ ··· + u + 1
c
2
u
65
+ 36u
64
+ ··· 5u 1
c
3
u
65
+ 2u
64
+ ··· 77u 209
c
4
u
65
14u
63
+ ··· 51079u 9713
c
6
, c
11
u
65
+ 2u
64
+ ··· 27u + 17
c
7
u
65
2u
64
+ ··· + u 1
c
8
, c
10
u
65
3u
64
+ ··· 6u + 1
c
9
u
65
+ 11u
64
+ ··· 12u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
65
+ 36y
64
+ ··· 5y 1
c
2
y
65
12y
64
+ ··· 97y 1
c
3
y
65
80y
64
+ ··· + 680999y 43681
c
4
y
65
28y
64
+ ··· 2283276729y 94342369
c
6
, c
11
y
65
60y
64
+ ··· 15013y 289
c
7
y
65
+ 12y
64
+ ··· 5y 1
c
8
, c
10
y
65
51y
64
+ ··· 94y 1
c
9
y
65
+ 15y
64
+ ··· 152y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.255209 + 0.948908I
a = 0.99928 + 1.01479I
b = 2.04192 0.64047I
4.38791 + 0.83519I 11.90532 1.80779I
u = 0.255209 0.948908I
a = 0.99928 1.01479I
b = 2.04192 + 0.64047I
4.38791 0.83519I 11.90532 + 1.80779I
u = 0.379172 + 0.954880I
a = 0.44986 + 1.99487I
b = 0.95093 2.01516I
3.54308 + 4.03035I 8.72949 8.88482I
u = 0.379172 0.954880I
a = 0.44986 1.99487I
b = 0.95093 + 2.01516I
3.54308 4.03035I 8.72949 + 8.88482I
u = 0.484262 + 0.914397I
a = 1.118230 + 0.362011I
b = 2.04011 0.02854I
0.85073 + 5.73380I 0. 9.30698I
u = 0.484262 0.914397I
a = 1.118230 0.362011I
b = 2.04011 + 0.02854I
0.85073 5.73380I 0. + 9.30698I
u = 0.350482 + 0.867729I
a = 0.86949 2.41938I
b = 2.39364 0.40176I
2.05273 1.79214I 3.9608 27.3479I
u = 0.350482 0.867729I
a = 0.86949 + 2.41938I
b = 2.39364 + 0.40176I
2.05273 + 1.79214I 3.9608 + 27.3479I
u = 0.416907 + 0.814224I
a = 0.0826608 0.0580767I
b = 0.394803 + 0.423441I
0.06086 1.78141I 0.16593 + 3.65886I
u = 0.416907 0.814224I
a = 0.0826608 + 0.0580767I
b = 0.394803 0.423441I
0.06086 + 1.78141I 0.16593 3.65886I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.688274 + 0.597046I
a = 0.937870 + 0.013321I
b = 0.177796 0.445216I
1.20524 3.66120I 3.96415 + 8.51812I
u = 0.688274 0.597046I
a = 0.937870 0.013321I
b = 0.177796 + 0.445216I
1.20524 + 3.66120I 3.96415 8.51812I
u = 0.895488 + 0.125785I
a = 0.09492 + 1.43200I
b = 0.376735 0.287159I
7.23534 2.53854I 7.87268 + 2.81634I
u = 0.895488 0.125785I
a = 0.09492 1.43200I
b = 0.376735 + 0.287159I
7.23534 + 2.53854I 7.87268 2.81634I
u = 0.042517 + 0.896108I
a = 1.233970 0.489969I
b = 1.50275 + 1.00485I
1.88737 1.49983I 7.09909 + 4.37897I
u = 0.042517 0.896108I
a = 1.233970 + 0.489969I
b = 1.50275 1.00485I
1.88737 + 1.49983I 7.09909 4.37897I
u = 0.873776 + 0.112840I
a = 0.53746 2.51675I
b = 0.325555 + 0.658517I
7.98517 + 11.01330I 4.27925 5.99396I
u = 0.873776 0.112840I
a = 0.53746 + 2.51675I
b = 0.325555 0.658517I
7.98517 11.01330I 4.27925 + 5.99396I
u = 0.457366 + 1.034950I
a = 0.505700 + 0.060882I
b = 0.747461 + 0.669285I
0.33001 3.05900I 0
u = 0.457366 1.034950I
a = 0.505700 0.060882I
b = 0.747461 0.669285I
0.33001 + 3.05900I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.571139 + 0.977969I
a = 0.414828 0.730148I
b = 1.62844 + 0.58978I
3.06278 + 10.75520I 0
u = 0.571139 0.977969I
a = 0.414828 + 0.730148I
b = 1.62844 0.58978I
3.06278 10.75520I 0
u = 0.637047 + 0.936500I
a = 0.173925 + 0.578410I
b = 0.317828 0.930103I
2.16059 1.39700I 0
u = 0.637047 0.936500I
a = 0.173925 0.578410I
b = 0.317828 + 0.930103I
2.16059 + 1.39700I 0
u = 0.681051 + 0.492285I
a = 0.499375 + 1.028690I
b = 0.444176 + 0.382574I
1.66713 5.95884I 1.87973 + 5.22029I
u = 0.681051 0.492285I
a = 0.499375 1.028690I
b = 0.444176 0.382574I
1.66713 + 5.95884I 1.87973 5.22029I
u = 0.026760 + 1.174520I
a = 0.625886 + 0.349711I
b = 1.65520 0.65340I
7.09632 4.52850I 0
u = 0.026760 1.174520I
a = 0.625886 0.349711I
b = 1.65520 + 0.65340I
7.09632 + 4.52850I 0
u = 0.824553 + 0.021951I
a = 0.07187 + 1.73665I
b = 0.732613 0.631471I
7.00163 + 2.10905I 8.59887 3.22074I
u = 0.824553 0.021951I
a = 0.07187 1.73665I
b = 0.732613 + 0.631471I
7.00163 2.10905I 8.59887 + 3.22074I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.816612 + 0.075250I
a = 0.48242 + 2.15457I
b = 0.036633 0.982310I
2.82170 + 5.12577I 2.55858 6.00397I
u = 0.816612 0.075250I
a = 0.48242 2.15457I
b = 0.036633 + 0.982310I
2.82170 5.12577I 2.55858 + 6.00397I
u = 0.792642
a = 4.90851
b = 0.401921
4.52444 15.6460
u = 0.268889 + 0.735800I
a = 1.80208 + 0.80816I
b = 2.05899 + 1.16628I
1.59108 1.22204I 11.25340 + 3.73985I
u = 0.268889 0.735800I
a = 1.80208 0.80816I
b = 2.05899 1.16628I
1.59108 + 1.22204I 11.25340 3.73985I
u = 0.775998 + 0.055269I
a = 1.05405 1.76675I
b = 0.272202 + 0.513943I
2.68758 0.98018I 2.13142 1.09675I
u = 0.775998 0.055269I
a = 1.05405 + 1.76675I
b = 0.272202 0.513943I
2.68758 + 0.98018I 2.13142 + 1.09675I
u = 0.487308 + 0.547787I
a = 0.01925 1.62217I
b = 0.231211 + 0.350100I
1.87042 1.68269I 3.98101 + 2.38110I
u = 0.487308 0.547787I
a = 0.01925 + 1.62217I
b = 0.231211 0.350100I
1.87042 + 1.68269I 3.98101 2.38110I
u = 0.432502 + 1.204000I
a = 1.75345 + 0.89087I
b = 2.78335 1.12697I
6.34559 + 3.27358I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.432502 1.204000I
a = 1.75345 0.89087I
b = 2.78335 + 1.12697I
6.34559 3.27358I 0
u = 0.477979 + 1.199780I
a = 1.55306 + 0.77188I
b = 2.26994 1.41320I
6.01852 + 5.55484I 0
u = 0.477979 1.199780I
a = 1.55306 0.77188I
b = 2.26994 + 1.41320I
6.01852 5.55484I 0
u = 0.420103 + 1.222350I
a = 2.02050 + 0.09514I
b = 2.61282 0.57494I
6.68706 + 0.82473I 0
u = 0.420103 1.222350I
a = 2.02050 0.09514I
b = 2.61282 + 0.57494I
6.68706 0.82473I 0
u = 0.457248 + 1.211200I
a = 0.96035 3.09348I
b = 1.90067 + 5.72471I
8.07040 + 4.48064I 0
u = 0.457248 1.211200I
a = 0.96035 + 3.09348I
b = 1.90067 5.72471I
8.07040 4.48064I 0
u = 0.448174 + 1.226550I
a = 1.149020 0.597546I
b = 1.70773 0.09090I
10.71550 2.40472I 0
u = 0.448174 1.226550I
a = 1.149020 + 0.597546I
b = 1.70773 + 0.09090I
10.71550 + 2.40472I 0
u = 0.490148 + 1.212660I
a = 2.22210 + 0.44255I
b = 3.07486 0.48626I
6.18604 9.87507I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.490148 1.212660I
a = 2.22210 0.44255I
b = 3.07486 + 0.48626I
6.18604 + 9.87507I 0
u = 0.468861 + 1.223140I
a = 1.95666 0.56765I
b = 2.74601 + 0.33365I
10.56670 6.75210I 0
u = 0.468861 1.223140I
a = 1.95666 + 0.56765I
b = 2.74601 0.33365I
10.56670 + 6.75210I 0
u = 0.393745 + 1.260010I
a = 1.72213 0.24493I
b = 2.67784 + 1.24472I
12.22780 + 6.64210I 0
u = 0.393745 1.260010I
a = 1.72213 + 0.24493I
b = 2.67784 1.24472I
12.22780 6.64210I 0
u = 0.384245 + 1.272530I
a = 0.918549 0.118993I
b = 1.61318 0.48242I
11.61320 + 1.86120I 0
u = 0.384245 1.272530I
a = 0.918549 + 0.118993I
b = 1.61318 + 0.48242I
11.61320 1.86120I 0
u = 0.517285 + 1.227500I
a = 2.38902 0.02987I
b = 3.77402 + 0.28861I
11.3347 16.0510I 0
u = 0.517285 1.227500I
a = 2.38902 + 0.02987I
b = 3.77402 0.28861I
11.3347 + 16.0510I 0
u = 0.526288 + 1.234520I
a = 1.41665 0.19459I
b = 2.29059 + 0.00902I
10.58890 + 7.68258I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526288 1.234520I
a = 1.41665 + 0.19459I
b = 2.29059 0.00902I
10.58890 7.68258I 0
u = 0.488804 + 0.385911I
a = 0.885850 0.643188I
b = 0.403529 + 0.183900I
1.49244 0.86359I 5.03880 + 1.53624I
u = 0.488804 0.385911I
a = 0.885850 + 0.643188I
b = 0.403529 0.183900I
1.49244 + 0.86359I 5.03880 1.53624I
u = 0.287539 + 0.230477I
a = 3.01358 1.00850I
b = 0.980634 + 0.158120I
1.91160 0.92204I 3.30845 + 0.88312I
u = 0.287539 0.230477I
a = 3.01358 + 1.00850I
b = 0.980634 0.158120I
1.91160 + 0.92204I 3.30845 0.88312I
11
II. I
u
2
= hb + u, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u 1
a
3
=
u
u
a
7
=
1
u + 1
a
9
=
u + 1
u
a
10
=
u + 1
u
a
5
=
u
u
a
4
=
u + 1
1
a
11
=
0
u
a
8
=
u + 1
0
a
8
=
u + 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 1
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
2
+ u + 1
c
3
, c
4
, c
5
c
11
u
2
u + 1
c
8
(u 1)
2
c
9
u
2
c
10
(u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
11
y
2
+ y + 1
c
8
, c
10
(y 1)
2
c
9
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 3.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 3.00000 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)(u
65
2u
64
+ ··· + u + 1)
c
2
(u
2
+ u + 1)(u
65
+ 36u
64
+ ··· 5u 1)
c
3
(u
2
u + 1)(u
65
+ 2u
64
+ ··· 77u 209)
c
4
(u
2
u + 1)(u
65
14u
63
+ ··· 51079u 9713)
c
5
(u
2
u + 1)(u
65
2u
64
+ ··· + u + 1)
c
6
(u
2
+ u + 1)(u
65
+ 2u
64
+ ··· 27u + 17)
c
7
(u
2
+ u + 1)(u
65
2u
64
+ ··· + u 1)
c
8
((u 1)
2
)(u
65
3u
64
+ ··· 6u + 1)
c
9
u
2
(u
65
+ 11u
64
+ ··· 12u 4)
c
10
((u + 1)
2
)(u
65
3u
64
+ ··· 6u + 1)
c
11
(u
2
u + 1)(u
65
+ 2u
64
+ ··· 27u + 17)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
+ y + 1)(y
65
+ 36y
64
+ ··· 5y 1)
c
2
(y
2
+ y + 1)(y
65
12y
64
+ ··· 97y 1)
c
3
(y
2
+ y + 1)(y
65
80y
64
+ ··· + 680999y 43681)
c
4
(y
2
+ y + 1)(y
65
28y
64
+ ··· 2.28328 × 10
9
y 9.43424 × 10
7
)
c
6
, c
11
(y
2
+ y + 1)(y
65
60y
64
+ ··· 15013y 289)
c
7
(y
2
+ y + 1)(y
65
+ 12y
64
+ ··· 5y 1)
c
8
, c
10
((y 1)
2
)(y
65
51y
64
+ ··· 94y 1)
c
9
y
2
(y
65
+ 15y
64
+ ··· 152y 16)
17