11a
84
(K11a
84
)
A knot diagram
1
Linearized knot diagam
5 1 9 11 2 3 10 4 8 7 6
Solving Sequence
4,8
9 10 3 7 11 5 6 1 2
c
8
c
9
c
3
c
7
c
10
c
4
c
6
c
11
c
2
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
50
+ u
49
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
50
+ u
49
+ · · · u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
4
+ u
2
+ 1
u
4
a
11
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
5
=
u
13
+ 2u
11
+ 5u
9
+ 6u
7
+ 6u
5
+ 4u
3
+ u
u
13
+ u
11
+ 3u
9
+ 2u
7
+ 2u
5
+ u
3
+ u
a
6
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
10
+ 2u
8
+ 3u
6
+ 4u
4
+ u
2
a
1
=
u
24
3u
22
+ ··· + 2u
2
+ 1
u
26
4u
24
+ ··· 3u
6
+ u
2
a
2
=
u
47
+ 6u
45
+ ··· + 4u
3
+ 2u
u
49
+ 7u
47
+ ··· + 2u
3
+ u
a
2
=
u
47
+ 6u
45
+ ··· + 4u
3
+ 2u
u
49
+ 7u
47
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
48
+ 4u
47
+ ··· 20u
3
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
50
+ u
49
+ ··· u + 1
c
2
u
50
+ 23u
49
+ ··· u + 1
c
3
, c
8
u
50
u
49
+ ··· + u + 1
c
4
, c
6
u
50
u
49
+ ··· 165u + 25
c
7
, c
9
, c
10
u
50
13u
49
+ ··· u + 1
c
11
u
50
+ 3u
49
+ ··· + u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
50
23y
49
+ ··· + y + 1
c
2
y
50
+ 9y
49
+ ··· + y + 1
c
3
, c
8
y
50
+ 13y
49
+ ··· + y + 1
c
4
, c
6
y
50
31y
49
+ ··· 16275y + 625
c
7
, c
9
, c
10
y
50
+ 49y
49
+ ··· 7y + 1
c
11
y
50
+ 5y
49
+ ··· + 521y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.219529 + 0.986047I
3.94354 + 3.43046I 5.76669 1.67529I
u = 0.219529 0.986047I
3.94354 3.43046I 5.76669 + 1.67529I
u = 0.246085 + 0.982711I
5.58031 + 1.62349I 8.34360 3.64621I
u = 0.246085 0.982711I
5.58031 1.62349I 8.34360 + 3.64621I
u = 0.308256 + 0.923731I
0.40552 2.46934I 0.87793 + 4.65157I
u = 0.308256 0.923731I
0.40552 + 2.46934I 0.87793 4.65157I
u = 0.298826 + 0.987833I
5.26972 + 4.23270I 7.37704 4.53289I
u = 0.298826 0.987833I
5.26972 4.23270I 7.37704 + 4.53289I
u = 0.318075 + 0.994530I
3.36572 9.34553I 4.11417 + 9.06753I
u = 0.318075 0.994530I
3.36572 + 9.34553I 4.11417 9.06753I
u = 0.775854 + 0.801832I
2.39389 + 4.71062I 0.14636 5.46565I
u = 0.775854 0.801832I
2.39389 4.71062I 0.14636 + 5.46565I
u = 0.483537 + 0.734912I
1.95260 + 5.09579I 2.40884 8.50757I
u = 0.483537 0.734912I
1.95260 5.09579I 2.40884 + 8.50757I
u = 0.811513 + 0.797475I
1.169710 + 0.163979I 1.95677 0.52892I
u = 0.811513 0.797475I
1.169710 0.163979I 1.95677 + 0.52892I
u = 0.852019 + 0.801997I
2.15185 + 2.58590I 0.827994 0.674583I
u = 0.852019 0.801997I
2.15185 2.58590I 0.827994 + 0.674583I
u = 0.085415 + 0.824761I
1.16249 1.82384I 6.57065 + 4.44419I
u = 0.085415 0.824761I
1.16249 + 1.82384I 6.57065 4.44419I
u = 0.863831 + 0.802647I
4.29327 7.68607I 2.29729 + 4.73536I
u = 0.863831 0.802647I
4.29327 + 7.68607I 2.29729 4.73536I
u = 0.850278 + 0.827510I
6.91480 0.19952I 5.59281 + 0.I
u = 0.850278 0.827510I
6.91480 + 0.19952I 5.59281 + 0.I
u = 0.757117 + 0.952106I
1.93934 + 1.09281I 0
u = 0.757117 0.952106I
1.93934 1.09281I 0
u = 0.825284 + 0.899193I
6.17694 + 3.07827I 0. 2.72625I
u = 0.825284 0.899193I
6.17694 3.07827I 0. + 2.72625I
u = 0.845830 + 0.890740I
9.32972 + 0.72052I 6.40734 + 0.I
u = 0.845830 0.890740I
9.32972 0.72052I 6.40734 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.771222 + 0.962943I
0.66571 6.10737I 0. + 5.65000I
u = 0.771222 0.962943I
0.66571 + 6.10737I 0. 5.65000I
u = 0.836263 + 0.917270I
9.24690 6.97433I 6.10425 + 6.45667I
u = 0.836263 0.917270I
9.24690 + 6.97433I 6.10425 6.45667I
u = 0.332618 + 0.672808I
0.174284 1.327380I 1.54374 + 5.34383I
u = 0.332618 0.672808I
0.174284 + 1.327380I 1.54374 5.34383I
u = 0.802884 + 0.962136I
6.49492 + 6.35925I 0
u = 0.802884 0.962136I
6.49492 6.35925I 0
u = 0.792536 + 0.977055I
1.60913 8.71493I 0
u = 0.792536 0.977055I
1.60913 + 8.71493I 0
u = 0.798650 + 0.982182I
3.7340 + 13.8696I 0. 9.53503I
u = 0.798650 0.982182I
3.7340 13.8696I 0. + 9.53503I
u = 0.488576 + 0.512324I
2.60376 1.44363I 5.78396 + 0.53575I
u = 0.488576 0.512324I
2.60376 + 1.44363I 5.78396 0.53575I
u = 0.630218 + 0.101743I
0.59402 + 6.02058I 1.82523 5.20463I
u = 0.630218 0.101743I
0.59402 6.02058I 1.82523 + 5.20463I
u = 0.605378 + 0.059120I
2.43882 1.09952I 1.50149 + 0.50378I
u = 0.605378 0.059120I
2.43882 + 1.09952I 1.50149 0.50378I
u = 0.492805 + 0.206145I
1.73630 0.52214I 5.82516 + 0.81274I
u = 0.492805 0.206145I
1.73630 + 0.52214I 5.82516 0.81274I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
50
+ u
49
+ ··· u + 1
c
2
u
50
+ 23u
49
+ ··· u + 1
c
3
, c
8
u
50
u
49
+ ··· + u + 1
c
4
, c
6
u
50
u
49
+ ··· 165u + 25
c
7
, c
9
, c
10
u
50
13u
49
+ ··· u + 1
c
11
u
50
+ 3u
49
+ ··· + u + 3
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
50
23y
49
+ ··· + y + 1
c
2
y
50
+ 9y
49
+ ··· + y + 1
c
3
, c
8
y
50
+ 13y
49
+ ··· + y + 1
c
4
, c
6
y
50
31y
49
+ ··· 16275y + 625
c
7
, c
9
, c
10
y
50
+ 49y
49
+ ··· 7y + 1
c
11
y
50
+ 5y
49
+ ··· + 521y + 9
8