11a
90
(K11a
90
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 2 3 11 4 5 8 7
Solving Sequence
4,8
9 5 10 11 3 7 1 2 6
c
8
c
4
c
9
c
10
c
3
c
7
c
11
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
43
u
42
+ ··· + u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
43
u
42
+ · · · + u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
11
=
u
4
+ u
2
+ 1
u
4
2u
2
a
3
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
7
=
u
8
3u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
1
=
u
12
+ 5u
10
7u
8
+ 2u
4
+ 3u
2
+ 1
u
12
6u
10
+ 12u
8
8u
6
+ u
4
2u
2
a
2
=
u
31
14u
29
+ ··· + 20u
5
+ 8u
3
u
31
+ 15u
29
+ ··· 8u
5
+ u
a
6
=
u
20
9u
18
+ ··· + 3u
2
+ 1
u
22
+ 10u
20
+ ··· 10u
4
u
2
a
6
=
u
20
9u
18
+ ··· + 3u
2
+ 1
u
22
+ 10u
20
+ ··· 10u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
41
+ 80u
39
+ ··· + 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
43
u
42
+ ··· + 2u 1
c
2
u
43
+ 19u
42
+ ··· 2u 1
c
3
u
43
3u
42
+ ··· 165u + 88
c
4
, c
8
, c
9
u
43
+ u
42
+ ··· u
2
1
c
6
u
43
+ u
42
+ ··· 3u 2
c
7
, c
10
, c
11
u
43
5u
42
+ ··· + 52u 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
43
+ 19y
42
+ ··· 2y 1
c
2
y
43
+ 11y
42
+ ··· 10y 1
c
3
y
43
21y
42
+ ··· + 171017y 7744
c
4
, c
8
, c
9
y
43
41y
42
+ ··· 2y 1
c
6
y
43
+ 3y
42
+ ··· 163y 4
c
7
, c
10
, c
11
y
43
+ 47y
42
+ ··· 1090y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.450941 + 0.686624I
5.35054 9.10731I 3.33084 + 7.84073I
u = 0.450941 0.686624I
5.35054 + 9.10731I 3.33084 7.84073I
u = 0.463007 + 0.675614I
7.17544 + 3.78029I 6.09678 3.29694I
u = 0.463007 0.675614I
7.17544 3.78029I 6.09678 + 3.29694I
u = 0.512233 + 0.637578I
5.58121 + 4.70276I 4.01683 1.90768I
u = 0.512233 0.637578I
5.58121 4.70276I 4.01683 + 1.90768I
u = 1.180680 + 0.070474I
0.12031 + 3.39708I 1.05977 4.64882I
u = 1.180680 0.070474I
0.12031 3.39708I 1.05977 + 4.64882I
u = 0.496416 + 0.648800I
7.30167 + 0.61667I 6.46762 2.84316I
u = 0.496416 0.648800I
7.30167 0.61667I 6.46762 + 2.84316I
u = 0.447772 + 0.632332I
1.69784 2.06717I 0.16713 + 3.29698I
u = 0.447772 0.632332I
1.69784 + 2.06717I 0.16713 3.29698I
u = 1.25034
2.53757 3.48810
u = 1.304990 + 0.171072I
1.15199 1.78064I 0
u = 1.304990 0.171072I
1.15199 + 1.78064I 0
u = 0.206694 + 0.605749I
2.00685 + 5.68843I 2.34470 8.72951I
u = 0.206694 0.605749I
2.00685 5.68843I 2.34470 + 8.72951I
u = 1.356100 + 0.215927I
2.91900 8.67200I 0
u = 1.356100 0.215927I
2.91900 + 8.67200I 0
u = 1.366840 + 0.185574I
5.03487 + 4.10356I 0
u = 1.366840 0.185574I
5.03487 4.10356I 0
u = 1.403260 + 0.118432I
6.22218 + 2.77486I 0
u = 1.403260 0.118432I
6.22218 2.77486I 0
u = 1.411730 + 0.074872I
5.35002 + 1.81991I 0
u = 1.411730 0.074872I
5.35002 1.81991I 0
u = 0.089033 + 0.575299I
3.14805 0.90482I 6.51420 0.21846I
u = 0.089033 0.575299I
3.14805 + 0.90482I 6.51420 + 0.21846I
u = 0.221219 + 0.523394I
0.01425 1.49737I 1.74832 + 5.31506I
u = 0.221219 0.523394I
0.01425 + 1.49737I 1.74832 5.31506I
u = 0.504381 + 0.191157I
0.50303 2.82096I 3.24990 + 2.85228I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.504381 0.191157I
0.50303 + 2.82096I 3.24990 2.85228I
u = 1.47320 + 0.22968I
7.89812 + 5.22510I 0
u = 1.47320 0.22968I
7.89812 5.22510I 0
u = 0.353298 + 0.351162I
0.686131 1.038760I 5.50415 + 5.16099I
u = 0.353298 0.351162I
0.686131 + 1.038760I 5.50415 5.16099I
u = 1.48315 + 0.24777I
11.6071 + 12.5188I 0
u = 1.48315 0.24777I
11.6071 12.5188I 0
u = 1.48567 + 0.24134I
13.4835 7.1271I 0
u = 1.48567 0.24134I
13.4835 + 7.1271I 0
u = 1.49208 + 0.22410I
13.7502 3.7932I 0
u = 1.49208 0.22410I
13.7502 + 3.7932I 0
u = 1.49455 + 0.21615I
12.09380 1.60453I 0
u = 1.49455 0.21615I
12.09380 + 1.60453I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
43
u
42
+ ··· + 2u 1
c
2
u
43
+ 19u
42
+ ··· 2u 1
c
3
u
43
3u
42
+ ··· 165u + 88
c
4
, c
8
, c
9
u
43
+ u
42
+ ··· u
2
1
c
6
u
43
+ u
42
+ ··· 3u 2
c
7
, c
10
, c
11
u
43
5u
42
+ ··· + 52u 7
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
43
+ 19y
42
+ ··· 2y 1
c
2
y
43
+ 11y
42
+ ··· 10y 1
c
3
y
43
21y
42
+ ··· + 171017y 7744
c
4
, c
8
, c
9
y
43
41y
42
+ ··· 2y 1
c
6
y
43
+ 3y
42
+ ··· 163y 4
c
7
, c
10
, c
11
y
43
+ 47y
42
+ ··· 1090y 49
8