11a
93
(K11a
93
)
A knot diagram
1
Linearized knot diagam
6 1 11 9 2 3 10 4 8 7 5
Solving Sequence
4,8
9 5 10 7 11 1 3 2 6
c
8
c
4
c
9
c
7
c
10
c
11
c
3
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
46
u
45
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
46
u
45
+ · · · u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
2
a
7
=
u
4
u
2
+ 1
u
4
a
11
=
u
6
+ u
4
2u
2
+ 1
u
6
u
2
a
1
=
u
10
u
8
+ 2u
6
u
4
u
2
+ 1
u
12
+ 2u
10
4u
8
+ 4u
6
3u
4
a
3
=
u
13
2u
11
+ 5u
9
6u
7
+ 6u
5
4u
3
+ u
u
13
u
11
+ 3u
9
2u
7
+ 2u
5
u
3
+ u
a
2
=
u
35
4u
33
+ ··· 7u
3
+ 2u
u
37
+ 5u
35
+ ··· u
3
+ u
a
6
=
u
22
+ 3u
20
+ ··· 2u
2
+ 1
u
22
+ 2u
20
+ ··· + 4u
4
u
2
a
6
=
u
22
+ 3u
20
+ ··· 2u
2
+ 1
u
22
+ 2u
20
+ ··· + 4u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
44
+ 4u
43
+ ··· 4u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
46
u
45
+ ··· 3u + 1
c
2
u
46
+ 25u
45
+ ··· u + 1
c
3
u
46
7u
45
+ ··· + 25u + 101
c
4
, c
8
u
46
+ u
45
+ ··· + u + 1
c
6
, c
11
u
46
+ u
45
+ ··· + 11u + 2
c
7
, c
9
, c
10
u
46
11u
45
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
46
+ 25y
45
+ ··· y + 1
c
2
y
46
7y
45
+ ··· 17y + 1
c
3
y
46
19y
45
+ ··· + 139967y + 10201
c
4
, c
8
y
46
11y
45
+ ··· y + 1
c
6
, c
11
y
46
39y
45
+ ··· + 239y + 4
c
7
, c
9
, c
10
y
46
+ 49y
45
+ ··· 9y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926616 + 0.410566I
0.61712 + 4.64033I 3.90866 6.37467I
u = 0.926616 0.410566I
0.61712 4.64033I 3.90866 + 6.37467I
u = 0.914147 + 0.454246I
4.39692 0.74190I 1.01050 + 2.76153I
u = 0.914147 0.454246I
4.39692 + 0.74190I 1.01050 2.76153I
u = 0.911781 + 0.304147I
2.15395 + 4.51135I 7.09548 8.74151I
u = 0.911781 0.304147I
2.15395 4.51135I 7.09548 + 8.74151I
u = 0.954952 + 0.418436I
3.69312 9.28862I 0.73867 + 9.25644I
u = 0.954952 0.418436I
3.69312 + 9.28862I 0.73867 9.25644I
u = 0.930509 + 0.048833I
1.66163 4.02262I 4.31758 + 3.30145I
u = 0.930509 0.048833I
1.66163 + 4.02262I 4.31758 3.30145I
u = 0.890449 + 0.239219I
2.52825 0.40745I 9.12909 + 0.87770I
u = 0.890449 0.239219I
2.52825 + 0.40745I 9.12909 0.87770I
u = 0.814350 + 0.077554I
1.220450 0.051921I 8.69452 + 0.37904I
u = 0.814350 0.077554I
1.220450 + 0.051921I 8.69452 0.37904I
u = 0.845736 + 0.830186I
4.84996 + 2.01035I 0. 3.31970I
u = 0.845736 0.830186I
4.84996 2.01035I 0. + 3.31970I
u = 0.871966 + 0.808985I
3.65550 + 2.31659I 2.70777 2.80879I
u = 0.871966 0.808985I
3.65550 2.31659I 2.70777 + 2.80879I
u = 0.918456 + 0.798302I
3.51223 + 3.71082I 3.02524 2.42011I
u = 0.918456 0.798302I
3.51223 3.71082I 3.02524 + 2.42011I
u = 0.851134 + 0.882685I
8.86024 + 1.86315I 6 1.106545 + 0.10I
u = 0.851134 0.882685I
8.86024 1.86315I 6 1.106545 + 0.10I
u = 0.845372 + 0.890503I
12.13790 6.72244I 4.11786 + 3.49282I
u = 0.845372 0.890503I
12.13790 + 6.72244I 4.11786 3.49282I
u = 0.862272 + 0.887980I
12.90310 + 2.35522I 5.23797 2.80998I
u = 0.862272 0.887980I
12.90310 2.35522I 5.23797 + 2.80998I
u = 0.943172 + 0.803061I
4.55090 8.11388I 0. + 8.45293I
u = 0.943172 0.803061I
4.55090 + 8.11388I 0. 8.45293I
u = 0.640742 + 0.410350I
1.44816 + 1.63407I 3.46961 5.26360I
u = 0.640742 0.410350I
1.44816 1.63407I 3.46961 + 5.26360I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907049 + 0.844230I
8.35989 3.13875I 5.65909 + 2.64059I
u = 0.907049 0.844230I
8.35989 + 3.13875I 5.65909 2.64059I
u = 0.391409 + 0.635070I
6.04130 3.27213I 5.13047 + 3.47488I
u = 0.391409 0.635070I
6.04130 + 3.27213I 5.13047 3.47488I
u = 0.966860 + 0.834394I
8.49402 8.22551I 0. + 5.24210I
u = 0.966860 0.834394I
8.49402 + 8.22551I 0. 5.24210I
u = 0.963540 + 0.844204I
12.58150 + 4.05580I 4.67518 + 0.I
u = 0.963540 0.844204I
12.58150 4.05580I 4.67518 + 0.I
u = 0.313493 + 0.645402I
5.71816 + 5.39161I 4.52962 3.70458I
u = 0.313493 0.645402I
5.71816 5.39161I 4.52962 + 3.70458I
u = 0.974549 + 0.835372I
11.7284 + 13.1112I 0. 8.32350I
u = 0.974549 0.835372I
11.7284 13.1112I 0. + 8.32350I
u = 0.339399 + 0.599164I
2.45150 0.89325I 1.50590 + 0.29908I
u = 0.339399 0.599164I
2.45150 + 0.89325I 1.50590 0.29908I
u = 0.107548 + 0.462569I
0.09670 1.71368I 0.09766 + 4.16841I
u = 0.107548 0.462569I
0.09670 + 1.71368I 0.09766 4.16841I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
46
u
45
+ ··· 3u + 1
c
2
u
46
+ 25u
45
+ ··· u + 1
c
3
u
46
7u
45
+ ··· + 25u + 101
c
4
, c
8
u
46
+ u
45
+ ··· + u + 1
c
6
, c
11
u
46
+ u
45
+ ··· + 11u + 2
c
7
, c
9
, c
10
u
46
11u
45
+ ··· u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
46
+ 25y
45
+ ··· y + 1
c
2
y
46
7y
45
+ ··· 17y + 1
c
3
y
46
19y
45
+ ··· + 139967y + 10201
c
4
, c
8
y
46
11y
45
+ ··· y + 1
c
6
, c
11
y
46
39y
45
+ ··· + 239y + 4
c
7
, c
9
, c
10
y
46
+ 49y
45
+ ··· 9y + 1
8