11a
94
(K11a
94
)
A knot diagram
1
Linearized knot diagam
5 1 9 6 2 3 11 10 4 7 8
Solving Sequence
7,10
11 8
3,9
4 1 2 6 5
c
10
c
7
c
8
c
3
c
11
c
2
c
6
c
5
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−17u
55
+ 43u
54
+ ··· + 2b 11, 3u
55
+ 7u
54
+ ··· + 4a + 3, u
56
4u
55
+ ··· 2u 1i
I
u
2
= hb, a
3
+ a
2
+ 2a + 1, u + 1i
* 2 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−17u
55
+ 43u
54
+ · · · + 2b 11, 3u
55
+ 7u
54
+ · · · + 4a + 3, u
56
4u
55
+ · · · 2u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
3
=
3
4
u
55
7
4
u
54
+ ··· +
13
4
u
3
4
17
2
u
55
43
2
u
54
+ ··· +
31
2
u +
11
2
a
9
=
u
3
2u
u
3
+ u
a
4
=
33
4
u
55
85
4
u
54
+ ··· +
71
4
u +
19
4
5
2
u
55
17
2
u
54
+ ··· +
17
2
u +
5
2
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
27
4
u
55
71
4
u
54
+ ··· +
57
4
u +
13
4
27
4
u
55
75
4
u
54
+ ··· +
61
4
u +
21
4
a
6
=
1
4
u
55
3
4
u
54
+ ···
13
4
u
3
4
u
10
+ 4u
8
+ 2u
7
5u
6
6u
5
+ 4u
3
+ 3u
2
+ 2u
a
5
=
4u
55
23
2
u
54
+ ··· + 5u +
3
2
9
4
u
55
+
25
4
u
54
+ ···
7
4
u
7
4
a
5
=
4u
55
23
2
u
54
+ ··· + 5u +
3
2
9
4
u
55
+
25
4
u
54
+ ···
7
4
u
7
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
55
+
15
2
u
54
+ ··· + 5u
29
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
56
+ 2u
55
+ ··· 5u 1
c
2
, c
4
u
56
+ 18u
55
+ ··· + 5u + 1
c
3
, c
9
u
56
u
55
+ ··· + 12u + 8
c
6
u
56
2u
55
+ ··· 145u 25
c
7
, c
10
, c
11
u
56
4u
55
+ ··· 2u 1
c
8
u
56
+ 21u
55
+ ··· + 592u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
56
18y
55
+ ··· 5y + 1
c
2
, c
4
y
56
+ 42y
55
+ ··· 77y + 1
c
3
, c
9
y
56
21y
55
+ ··· 592y + 64
c
6
y
56
+ 6y
55
+ ··· + 7275y + 625
c
7
, c
10
, c
11
y
56
48y
55
+ ··· 18y + 1
c
8
y
56
+ 23y
55
+ ··· 85248y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.866172 + 0.412104I
a = 0.716759 + 0.563360I
b = 0.408158 0.290046I
3.84915 0.47402I 20.0517 + 1.8006I
u = 0.866172 0.412104I
a = 0.716759 0.563360I
b = 0.408158 + 0.290046I
3.84915 + 0.47402I 20.0517 1.8006I
u = 0.188462 + 0.854305I
a = 1.56928 + 1.20703I
b = 1.35361 1.14786I
3.70616 + 10.08220I 9.08620 8.29722I
u = 0.188462 0.854305I
a = 1.56928 1.20703I
b = 1.35361 + 1.14786I
3.70616 10.08220I 9.08620 + 8.29722I
u = 0.165662 + 0.838312I
a = 1.65426 0.98689I
b = 1.41656 + 1.00950I
4.58143 + 4.28016I 7.26827 3.33660I
u = 0.165662 0.838312I
a = 1.65426 + 0.98689I
b = 1.41656 1.00950I
4.58143 4.28016I 7.26827 + 3.33660I
u = 1.050040 + 0.463708I
a = 0.479637 + 1.195890I
b = 0.907676 0.666506I
1.07406 5.37584I 0
u = 1.050040 0.463708I
a = 0.479637 1.195890I
b = 0.907676 + 0.666506I
1.07406 + 5.37584I 0
u = 1.078200 + 0.427394I
a = 0.272195 1.149050I
b = 1.066620 + 0.514728I
1.79919 + 0.26900I 0
u = 1.078200 0.427394I
a = 0.272195 + 1.149050I
b = 1.066620 0.514728I
1.79919 0.26900I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617027 + 0.535939I
a = 0.858761 0.032635I
b = 0.0856353 + 0.0708847I
0.71189 + 4.42421I 14.7302 6.6620I
u = 0.617027 0.535939I
a = 0.858761 + 0.032635I
b = 0.0856353 0.0708847I
0.71189 4.42421I 14.7302 + 6.6620I
u = 1.168010 + 0.209136I
a = 0.247139 0.431048I
b = 1.026800 0.591291I
1.37028 + 0.97595I 0
u = 1.168010 0.209136I
a = 0.247139 + 0.431048I
b = 1.026800 + 0.591291I
1.37028 0.97595I 0
u = 0.241002 + 0.768489I
a = 0.882963 + 0.837698I
b = 0.943312 0.875499I
1.88523 + 4.71954I 14.7264 6.6425I
u = 0.241002 0.768489I
a = 0.882963 0.837698I
b = 0.943312 + 0.875499I
1.88523 4.71954I 14.7264 + 6.6425I
u = 1.225830 + 0.232995I
a = 0.37066 1.43650I
b = 0.872612 0.365716I
1.47062 + 1.23708I 0
u = 1.225830 0.232995I
a = 0.37066 + 1.43650I
b = 0.872612 + 0.365716I
1.47062 1.23708I 0
u = 1.240870 + 0.261920I
a = 0.09120 + 1.42966I
b = 1.006580 + 0.465327I
1.86713 4.74693I 0
u = 1.240870 0.261920I
a = 0.09120 1.42966I
b = 1.006580 0.465327I
1.86713 + 4.74693I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.140644 + 0.703431I
a = 1.178460 0.095442I
b = 1.155670 + 0.456832I
1.60637 + 2.37356I 6.13877 4.17137I
u = 0.140644 0.703431I
a = 1.178460 + 0.095442I
b = 1.155670 0.456832I
1.60637 2.37356I 6.13877 + 4.17137I
u = 0.048164 + 0.710249I
a = 2.01204 + 0.89303I
b = 1.59325 0.13231I
5.50599 + 1.24032I 5.23066 2.33484I
u = 0.048164 0.710249I
a = 2.01204 0.89303I
b = 1.59325 + 0.13231I
5.50599 1.24032I 5.23066 + 2.33484I
u = 0.448607 + 0.542572I
a = 0.438992 + 0.149521I
b = 0.297929 0.283370I
0.279032 0.387064I 13.17728 1.08778I
u = 0.448607 0.542572I
a = 0.438992 0.149521I
b = 0.297929 + 0.283370I
0.279032 + 0.387064I 13.17728 + 1.08778I
u = 0.086804 + 0.689503I
a = 2.00700 1.20329I
b = 1.55835 + 0.31132I
4.89165 4.55526I 6.35177 + 3.19659I
u = 0.086804 0.689503I
a = 2.00700 + 1.20329I
b = 1.55835 0.31132I
4.89165 + 4.55526I 6.35177 3.19659I
u = 1.305330 + 0.049118I
a = 0.193950 0.243423I
b = 0.39449 + 1.81061I
2.36775 2.29859I 0
u = 1.305330 0.049118I
a = 0.193950 + 0.243423I
b = 0.39449 1.81061I
2.36775 + 2.29859I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.302410 + 0.198734I
a = 0.712631 + 0.159499I
b = 1.50723 + 1.35120I
4.77983 + 2.82843I 0
u = 1.302410 0.198734I
a = 0.712631 0.159499I
b = 1.50723 1.35120I
4.77983 2.82843I 0
u = 1.296500 + 0.293943I
a = 0.904976 0.648287I
b = 2.05274 0.77370I
1.30531 + 2.39964I 0
u = 1.296500 0.293943I
a = 0.904976 + 0.648287I
b = 2.05274 + 0.77370I
1.30531 2.39964I 0
u = 1.322480 + 0.285611I
a = 1.042770 + 0.548589I
b = 2.18268 + 0.97725I
0.45930 + 8.10035I 0
u = 1.322480 0.285611I
a = 1.042770 0.548589I
b = 2.18268 0.97725I
0.45930 8.10035I 0
u = 1.350790 + 0.293586I
a = 0.501547 + 0.644493I
b = 1.03042 + 1.22757I
3.10733 6.00225I 0
u = 1.350790 0.293586I
a = 0.501547 0.644493I
b = 1.03042 1.22757I
3.10733 + 6.00225I 0
u = 1.372070 + 0.235523I
a = 0.076585 0.360451I
b = 0.548336 1.187110I
5.59879 2.28336I 0
u = 1.372070 0.235523I
a = 0.076585 + 0.360451I
b = 0.548336 + 1.187110I
5.59879 + 2.28336I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.403150 + 0.062138I
a = 0.772974 0.030882I
b = 0.360419 0.400109I
6.13819 1.16533I 0
u = 1.403150 0.062138I
a = 0.772974 + 0.030882I
b = 0.360419 + 0.400109I
6.13819 + 1.16533I 0
u = 1.37282 + 0.35653I
a = 1.134610 + 0.597959I
b = 1.51941 + 1.55952I
0.27805 8.58003I 0
u = 1.37282 0.35653I
a = 1.134610 0.597959I
b = 1.51941 1.55952I
0.27805 + 8.58003I 0
u = 1.39495 + 0.31342I
a = 0.767957 0.290710I
b = 1.06397 1.65056I
7.07159 8.63297I 0
u = 1.39495 0.31342I
a = 0.767957 + 0.290710I
b = 1.06397 + 1.65056I
7.07159 + 8.63297I 0
u = 1.38707 + 0.36194I
a = 1.225820 0.469271I
b = 1.54315 1.70908I
1.2781 14.4580I 0
u = 1.38707 0.36194I
a = 1.225820 + 0.469271I
b = 1.54315 + 1.70908I
1.2781 + 14.4580I 0
u = 1.45135 + 0.08180I
a = 0.739121 0.103503I
b = 0.656296 + 0.649639I
7.50796 6.20957I 0
u = 1.45135 0.08180I
a = 0.739121 + 0.103503I
b = 0.656296 0.649639I
7.50796 + 6.20957I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45795
a = 0.872262
b = 0.821275
11.3625 0
u = 0.035406 + 0.444835I
a = 0.396342 1.248670I
b = 0.772381 + 0.172570I
0.691494 0.342390I 11.27142 + 0.66679I
u = 0.035406 0.444835I
a = 0.396342 + 1.248670I
b = 0.772381 0.172570I
0.691494 + 0.342390I 11.27142 0.66679I
u = 0.316601 + 0.055324I
a = 0.04721 3.30384I
b = 0.067426 + 0.690981I
2.47292 + 2.72146I 4.00548 3.04642I
u = 0.316601 0.055324I
a = 0.04721 + 3.30384I
b = 0.067426 0.690981I
2.47292 2.72146I 4.00548 + 3.04642I
u = 0.306961
a = 1.09551
b = 0.380686
0.701749 14.3130
10
II. I
u
2
= hb, a
3
+ a
2
+ 2a + 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
3
=
a
0
a
9
=
1
0
a
4
=
a
0
a
1
=
0
1
a
2
=
a
a
a
6
=
a
2
1
a
5
=
a
2
a 1
a
a
5
=
a
2
a 1
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
3a 15
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
6
u
3
+ u
2
+ 2u + 1
c
3
, c
8
, c
9
u
3
c
4
u
3
u
2
+ 2u 1
c
5
u
3
u
2
+ 1
c
7
(u 1)
3
c
10
, c
11
(u + 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
y
2
+ 2y 1
c
2
, c
4
, c
6
y
3
+ 3y
2
+ 2y 1
c
3
, c
8
, c
9
y
3
c
7
, c
10
, c
11
(y 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.215080 + 1.307140I
b = 0
1.37919 + 2.82812I 12.69240 3.35914I
u = 1.00000
a = 0.215080 1.307140I
b = 0
1.37919 2.82812I 12.69240 + 3.35914I
u = 1.00000
a = 0.569840
b = 0
2.75839 13.6150
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)(u
56
+ 2u
55
+ ··· 5u 1)
c
2
(u
3
+ u
2
+ 2u + 1)(u
56
+ 18u
55
+ ··· + 5u + 1)
c
3
, c
9
u
3
(u
56
u
55
+ ··· + 12u + 8)
c
4
(u
3
u
2
+ 2u 1)(u
56
+ 18u
55
+ ··· + 5u + 1)
c
5
(u
3
u
2
+ 1)(u
56
+ 2u
55
+ ··· 5u 1)
c
6
(u
3
+ u
2
+ 2u + 1)(u
56
2u
55
+ ··· 145u 25)
c
7
((u 1)
3
)(u
56
4u
55
+ ··· 2u 1)
c
8
u
3
(u
56
+ 21u
55
+ ··· + 592u + 64)
c
10
, c
11
((u + 1)
3
)(u
56
4u
55
+ ··· 2u 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
y
2
+ 2y 1)(y
56
18y
55
+ ··· 5y + 1)
c
2
, c
4
(y
3
+ 3y
2
+ 2y 1)(y
56
+ 42y
55
+ ··· 77y + 1)
c
3
, c
9
y
3
(y
56
21y
55
+ ··· 592y + 64)
c
6
(y
3
+ 3y
2
+ 2y 1)(y
56
+ 6y
55
+ ··· + 7275y + 625)
c
7
, c
10
, c
11
((y 1)
3
)(y
56
48y
55
+ ··· 18y + 1)
c
8
y
3
(y
56
+ 23y
55
+ ··· 85248y + 4096)
16