11a
97
(K11a
97
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 2 3 11 5 4 7 8
Solving Sequence
7,10
11 8
1,4
3 2 6 9 5
c
10
c
7
c
11
c
3
c
2
c
6
c
9
c
4
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h1.35647 × 10
26
u
40
+ 3.41407 × 10
25
u
39
+ ··· + 4.76775 × 10
26
b + 1.22986 × 10
27
,
1.32011 × 10
27
u
40
3.91635 × 10
27
u
39
+ ··· + 5.72130 × 10
27
a + 9.91592 × 10
27
, u
41
+ 3u
40
+ ··· 16u + 3i
I
u
2
= h−2a
3
3a
2
+ 5b 15a 7, a
4
+ 2a
3
+ 7a
2
+ 6a + 3, u 1i
I
u
3
= hb, a
2
+ a + 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.36×10
26
u
40
+3.41×10
25
u
39
+· · ·+4.77×10
26
b+1.23×10
27
, 1.32×10
27
u
40
3.92 × 10
27
u
39
+ · · · + 5.72 × 10
27
a + 9.92 × 10
27
, u
41
+ 3u
40
+ · · · 16u + 3i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.230736u
40
+ 0.684521u
39
+ ··· + 27.5823u 1.73316
0.284509u
40
0.0716075u
39
+ ··· + 13.5631u 2.57954
a
3
=
0.0537729u
40
+ 0.756128u
39
+ ··· + 14.0192u + 0.846378
0.284509u
40
0.0716075u
39
+ ··· + 13.5631u 2.57954
a
2
=
0.417033u
40
+ 0.180050u
39
+ ··· + 24.6975u 0.635993
0.488200u
40
0.376850u
39
+ ··· + 16.4598u 3.17299
a
6
=
0.699060u
40
0.274328u
39
+ ··· + 36.6179u 7.70938
0.662144u
40
0.883819u
39
+ ··· + 14.3253u 3.84461
a
9
=
2.14850u
40
+ 4.44463u
39
+ ··· + 10.3774u 6.62221
0.866962u
40
+ 1.26216u
39
+ ··· 10.7057u 0.442876
a
5
=
0.516885u
40
+ 0.0710561u
39
+ ··· 22.2661u + 0.886590
0.526631u
40
+ 0.306983u
39
+ ··· 19.7993u + 3.74658
a
5
=
0.516885u
40
+ 0.0710561u
39
+ ··· 22.2661u + 0.886590
0.526631u
40
+ 0.306983u
39
+ ··· 19.7993u + 3.74658
(ii) Obstruction class = 1
(iii) Cusp Shapes =
559898241088593396717061691
238387645942441547003348479
u
40
+
403977182003809318732241725
86686416706342380728490356
u
39
+
···
465164699436934167876296904
238387645942441547003348479
u +
633526497906639455712438183
953550583769766188013393916
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
2u
40
+ ··· + 3u 3
c
2
u
41
+ 22u
40
+ ··· 33u 9
c
3
, c
4
, c
8
c
9
u
41
u
40
+ ··· + 8u + 4
c
6
u
41
+ 2u
40
+ ··· + 327u 87
c
7
, c
10
, c
11
u
41
+ 3u
40
+ ··· 16u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
+ 22y
40
+ ··· 33y 9
c
2
y
41
2y
40
+ ··· + 423y 81
c
3
, c
4
, c
8
c
9
y
41
+ 51y
40
+ ··· 128y 16
c
6
y
41
26y
40
+ ··· 166425y 7569
c
7
, c
10
, c
11
y
41
43y
40
+ ··· + 4y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.997009 + 0.226554I
a = 0.0239968 + 0.0485183I
b = 0.302628 0.382168I
2.03507 + 1.22420I 5.30574 + 2.47978I
u = 0.997009 0.226554I
a = 0.0239968 0.0485183I
b = 0.302628 + 0.382168I
2.03507 1.22420I 5.30574 2.47978I
u = 0.549974 + 0.797423I
a = 0.960310 + 0.778214I
b = 0.05763 + 1.60436I
7.81669 2.63616I 2.57791 + 2.58719I
u = 0.549974 0.797423I
a = 0.960310 0.778214I
b = 0.05763 1.60436I
7.81669 + 2.63616I 2.57791 2.58719I
u = 0.507571 + 0.956182I
a = 0.888380 0.590788I
b = 0.09789 1.64453I
10.92990 7.37639I 5.80773 + 5.55165I
u = 0.507571 0.956182I
a = 0.888380 + 0.590788I
b = 0.09789 + 1.64453I
10.92990 + 7.37639I 5.80773 5.55165I
u = 0.762467 + 0.844946I
a = 0.710291 0.815437I
b = 0.00225 1.64871I
11.70310 + 1.34196I 7.30625 0.70220I
u = 0.762467 0.844946I
a = 0.710291 + 0.815437I
b = 0.00225 + 1.64871I
11.70310 1.34196I 7.30625 + 0.70220I
u = 1.137860 + 0.247744I
a = 0.169104 + 1.219170I
b = 0.12340 + 1.41903I
7.87303 + 0.41748I 9.30153 + 0.50767I
u = 1.137860 0.247744I
a = 0.169104 1.219170I
b = 0.12340 1.41903I
7.87303 0.41748I 9.30153 0.50767I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.455355 + 0.700282I
a = 0.905605 0.022977I
b = 0.366148 + 0.772313I
2.54750 + 5.63680I 3.76761 8.15870I
u = 0.455355 0.700282I
a = 0.905605 + 0.022977I
b = 0.366148 0.772313I
2.54750 5.63680I 3.76761 + 8.15870I
u = 0.631099 + 0.496871I
a = 0.486895 0.221432I
b = 0.021123 + 0.779816I
3.17977 1.35362I 6.58078 + 0.48937I
u = 0.631099 0.496871I
a = 0.486895 + 0.221432I
b = 0.021123 0.779816I
3.17977 + 1.35362I 6.58078 0.48937I
u = 1.247250 + 0.042571I
a = 0.20681 1.71804I
b = 0.102712 0.658984I
2.68106 2.54195I 5.78064 + 4.47516I
u = 1.247250 0.042571I
a = 0.20681 + 1.71804I
b = 0.102712 + 0.658984I
2.68106 + 2.54195I 5.78064 4.47516I
u = 0.337954 + 0.540347I
a = 0.817560 0.128808I
b = 0.294187 0.599361I
0.16445 + 1.48990I 0.43975 5.27239I
u = 0.337954 0.540347I
a = 0.817560 + 0.128808I
b = 0.294187 + 0.599361I
0.16445 1.48990I 0.43975 + 5.27239I
u = 1.38121
a = 0.0677912
b = 0.707999
3.43392 0
u = 1.45521 + 0.17025I
a = 0.414019 1.121630I
b = 0.508690 0.861076I
6.01336 4.06181I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45521 0.17025I
a = 0.414019 + 1.121630I
b = 0.508690 + 0.861076I
6.01336 + 4.06181I 0
u = 1.47695 + 0.04519I
a = 0.26335 + 2.90182I
b = 0.02320 + 1.62981I
10.76740 + 2.97655I 0
u = 1.47695 0.04519I
a = 0.26335 2.90182I
b = 0.02320 1.62981I
10.76740 2.97655I 0
u = 1.48592 + 0.10113I
a = 0.0860114 0.0153300I
b = 0.823123 + 0.103447I
6.74821 + 4.23995I 0
u = 1.48592 0.10113I
a = 0.0860114 + 0.0153300I
b = 0.823123 0.103447I
6.74821 4.23995I 0
u = 0.385648 + 0.302544I
a = 1.59375 0.01228I
b = 0.456373 + 0.089106I
0.52713 2.73009I 3.23724 + 4.11462I
u = 0.385648 0.302544I
a = 1.59375 + 0.01228I
b = 0.456373 0.089106I
0.52713 + 2.73009I 3.23724 4.11462I
u = 1.52169 + 0.06207I
a = 0.267867 + 1.067660I
b = 0.490449 + 1.028460I
10.25760 0.21541I 0
u = 1.52169 0.06207I
a = 0.267867 1.067660I
b = 0.490449 1.028460I
10.25760 + 0.21541I 0
u = 1.51624 + 0.23392I
a = 0.450012 + 1.020390I
b = 0.618443 + 0.860508I
9.03060 9.03490I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51624 0.23392I
a = 0.450012 1.020390I
b = 0.618443 0.860508I
9.03060 + 9.03490I 0
u = 0.046246 + 0.427515I
a = 1.224630 0.289199I
b = 0.391553 0.302388I
0.667792 + 1.033690I 4.88372 5.04725I
u = 0.046246 0.427515I
a = 1.224630 + 0.289199I
b = 0.391553 + 0.302388I
0.667792 1.033690I 4.88372 + 5.04725I
u = 1.55585 + 0.27915I
a = 0.94920 + 2.04202I
b = 0.14733 + 1.66702I
14.7091 + 6.6164I 0
u = 1.55585 0.27915I
a = 0.94920 2.04202I
b = 0.14733 1.66702I
14.7091 6.6164I 0
u = 1.57027 + 0.34811I
a = 1.02078 1.83166I
b = 0.18501 1.67298I
17.6792 + 12.1700I 0
u = 1.57027 0.34811I
a = 1.02078 + 1.83166I
b = 0.18501 + 1.67298I
17.6792 12.1700I 0
u = 1.64338 + 0.21292I
a = 0.60957 2.00064I
b = 0.11349 1.71534I
19.5976 + 2.5619I 0
u = 1.64338 0.21292I
a = 0.60957 + 2.00064I
b = 0.11349 + 1.71534I
19.5976 2.5619I 0
u = 0.214248 + 0.196206I
a = 3.15567 + 3.27078I
b = 0.02735 + 1.45336I
4.91839 2.21626I 0.59639 + 3.86290I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.214248 0.196206I
a = 3.15567 3.27078I
b = 0.02735 1.45336I
4.91839 + 2.21626I 0.59639 3.86290I
9
II. I
u
2
= h−2a
3
3a
2
+ 5b 15a 7, a
4
+ 2a
3
+ 7a
2
+ 6a + 3, u 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
1
=
0
1
a
4
=
a
2
5
a
3
+
3
5
a
2
+ 3a +
7
5
a
3
=
2
5
a
3
3
5
a
2
2a
7
5
2
5
a
3
+
3
5
a
2
+ 3a +
7
5
a
2
=
2
5
a
3
3
5
a
2
2a
7
5
4
5
a
3
+
6
5
a
2
+ 5a +
14
5
a
6
=
2
5
a
3
+
3
5
a
2
+ 2a +
2
5
1
5
a
3
+
1
5
a
2
a +
9
5
a
9
=
1
5
a
3
+
1
5
a
2
a
1
5
2
a
5
=
2
5
a
3
+
3
5
a
2
+ 2a +
7
5
2
5
a
3
3
5
a
2
3a
7
5
a
5
=
2
5
a
3
+
3
5
a
2
+ 2a +
7
5
2
5
a
3
3
5
a
2
3a
7
5
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
5
a
3
+
12
5
a
2
+ 8a
12
5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
2
c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
2
c
7
(u + 1)
4
c
10
, c
11
(u 1)
4
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
8
c
9
(y + 2)
4
c
7
, c
10
, c
11
(y 1)
4
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.548188I
b = 1.414210I
6.57974 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 0.548188I
b = 1.414210I
6.57974 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.50000 + 2.28024I
b = 1.414210I
6.57974 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.50000 2.28024I
b = 1.414210I
6.57974 2.02988I 6.00000 + 3.46410I
13
III. I
u
3
= hb, a
2
+ a + 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
1
=
0
1
a
4
=
a
0
a
3
=
a
0
a
2
=
a
a
a
6
=
a + 1
1
a
9
=
1
0
a
5
=
a
0
a
5
=
a
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 2
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
2
+ u + 1
c
3
, c
4
, c
8
c
9
u
2
c
5
u
2
u + 1
c
7
(u 1)
2
c
10
, c
11
(u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
2
+ y + 1
c
3
, c
4
, c
8
c
9
y
2
c
7
, c
10
, c
11
(y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0
1.64493 + 2.02988I 0. 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0
1.64493 2.02988I 0. + 3.46410I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
41
2u
40
+ ··· + 3u 3)
c
2
((u
2
+ u + 1)
3
)(u
41
+ 22u
40
+ ··· 33u 9)
c
3
, c
4
, c
8
c
9
u
2
(u
2
+ 2)
2
(u
41
u
40
+ ··· + 8u + 4)
c
5
(u
2
u + 1)(u
2
+ u + 1)
2
(u
41
2u
40
+ ··· + 3u 3)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
41
+ 2u
40
+ ··· + 327u 87)
c
7
((u 1)
2
)(u + 1)
4
(u
41
+ 3u
40
+ ··· 16u + 3)
c
10
, c
11
((u 1)
4
)(u + 1)
2
(u
41
+ 3u
40
+ ··· 16u + 3)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
3
)(y
41
+ 22y
40
+ ··· 33y 9)
c
2
((y
2
+ y + 1)
3
)(y
41
2y
40
+ ··· + 423y 81)
c
3
, c
4
, c
8
c
9
y
2
(y + 2)
4
(y
41
+ 51y
40
+ ··· 128y 16)
c
6
((y
2
+ y + 1)
3
)(y
41
26y
40
+ ··· 166425y 7569)
c
7
, c
10
, c
11
((y 1)
6
)(y
41
43y
40
+ ··· + 4y 9)
19