11a
98
(K11a
98
)
A knot diagram
1
Linearized knot diagam
6 1 10 9 2 3 11 5 4 8 7
Solving Sequence
5,8
9 4 10 11 3 7 1 2 6
c
8
c
4
c
9
c
10
c
3
c
7
c
11
c
2
c
6
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
38
u
37
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
38
u
37
+ · · · u + 1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
11
=
u
4
+ 3u
2
+ 1
u
4
2u
2
a
3
=
u
3
2u
u
5
+ 3u
3
+ u
a
7
=
u
8
+ 5u
6
+ 7u
4
+ 2u
2
+ 1
u
8
4u
6
4u
4
a
1
=
u
12
+ 7u
10
+ 17u
8
+ 16u
6
+ 6u
4
+ 5u
2
+ 1
u
12
6u
10
12u
8
8u
6
u
4
2u
2
a
2
=
u
29
+ 16u
27
+ ··· + 8u
3
u
u
29
15u
27
+ ··· + u
3
+ u
a
6
=
u
16
+ 9u
14
+ 31u
12
+ 50u
10
+ 39u
8
+ 22u
6
+ 18u
4
+ 4u
2
+ 1
u
18
10u
16
39u
14
74u
12
71u
10
40u
8
26u
6
12u
4
u
2
a
6
=
u
16
+ 9u
14
+ 31u
12
+ 50u
10
+ 39u
8
+ 22u
6
+ 18u
4
+ 4u
2
+ 1
u
18
10u
16
39u
14
74u
12
71u
10
40u
8
26u
6
12u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
37
+4u
36
84u
35
+76u
34
788u
33
+640u
32
4348u
31
+3136u
30
15652u
29
+9876u
28
38648u
27
+20892u
26
67496u
25
+30388u
24
86252u
23
+31308u
22
85720u
21
+24576u
20
72004u
19
+ 16236u
18
52428u
17
+ 8440u
16
31340u
15
+ 2244u
14
15844u
13
364u
12
7264u
11
736u
10
2476u
9
656u
8
756u
7
360u
6
144u
5
84u
4
52u
3
12u
2
12u+2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
38
u
37
+ ··· u + 1
c
2
u
38
+ 17u
37
+ ··· + 3u + 1
c
3
, c
4
, c
8
c
9
u
38
u
37
+ ··· u + 1
c
6
u
38
+ u
37
+ ··· + u + 1
c
7
, c
10
, c
11
u
38
5u
37
+ ··· 25u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
38
+ 17y
37
+ ··· + 3y + 1
c
2
y
38
+ 9y
37
+ ··· + 19y + 1
c
3
, c
4
, c
8
c
9
y
38
+ 41y
37
+ ··· + 3y + 1
c
6
y
38
+ y
37
+ ··· + 35y + 1
c
7
, c
10
, c
11
y
38
+ 37y
37
+ ··· + 59y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.635381 + 0.544778I
4.89318 + 8.99255I 2.54683 8.05726I
u = 0.635381 0.544778I
4.89318 8.99255I 2.54683 + 8.05726I
u = 0.637190 + 0.525254I
6.72503 3.70347I 5.40296 + 3.46584I
u = 0.637190 0.525254I
6.72503 + 3.70347I 5.40296 3.46584I
u = 0.646186 + 0.476105I
6.87083 0.63435I 5.86902 + 2.86167I
u = 0.646186 0.476105I
6.87083 + 0.63435I 5.86902 2.86167I
u = 0.651941 + 0.454511I
5.16060 4.64389I 3.40172 + 1.99685I
u = 0.651941 0.454511I
5.16060 + 4.64389I 3.40172 1.99685I
u = 0.587799 + 0.498634I
1.34506 + 2.00929I 0.48209 3.49556I
u = 0.587799 0.498634I
1.34506 2.00929I 0.48209 + 3.49556I
u = 0.330816 + 0.636061I
2.01726 5.47617I 3.09870 + 9.17486I
u = 0.330816 0.636061I
2.01726 + 5.47617I 3.09870 9.17486I
u = 0.144727 + 0.660329I
3.03329 + 1.00909I 7.12564 + 0.28235I
u = 0.144727 0.660329I
3.03329 1.00909I 7.12564 0.28235I
u = 0.301795 + 0.520951I
0.018847 + 1.384110I 1.16696 5.74622I
u = 0.301795 0.520951I
0.018847 1.384110I 1.16696 + 5.74622I
u = 0.03046 + 1.45212I
4.91125 + 2.21769I 0
u = 0.03046 1.45212I
4.91125 2.21769I 0
u = 0.19314 + 1.48235I
1.12742 1.62626I 0
u = 0.19314 1.48235I
1.12742 + 1.62626I 0
u = 0.19488 + 1.49761I
0.43075 3.64794I 0
u = 0.19488 1.49761I
0.43075 + 3.64794I 0
u = 0.379571 + 0.296373I
0.630271 + 1.053360I 5.17597 5.21367I
u = 0.379571 0.296373I
0.630271 1.053360I 5.17597 + 5.21367I
u = 0.17234 + 1.52286I
5.33654 + 4.72378I 0
u = 0.17234 1.52286I
5.33654 4.72378I 0
u = 0.448691 + 0.124937I
0.48331 + 2.76150I 3.31371 3.04166I
u = 0.448691 0.124937I
0.48331 2.76150I 3.31371 + 3.04166I
u = 0.06806 + 1.53625I
6.95274 + 2.61432I 0
u = 0.06806 1.53625I
6.95274 2.61432I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.19702 + 1.52628I
0.02756 6.72233I 0
u = 0.19702 1.52628I
0.02756 + 6.72233I 0
u = 0.19796 + 1.53605I
1.97382 + 12.02170I 0
u = 0.19796 1.53605I
1.97382 12.02170I 0
u = 0.03796 + 1.56118I
10.49980 + 0.35836I 0
u = 0.03796 1.56118I
10.49980 0.35836I 0
u = 0.08099 + 1.56107I
9.41307 6.91152I 0
u = 0.08099 1.56107I
9.41307 + 6.91152I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
38
u
37
+ ··· u + 1
c
2
u
38
+ 17u
37
+ ··· + 3u + 1
c
3
, c
4
, c
8
c
9
u
38
u
37
+ ··· u + 1
c
6
u
38
+ u
37
+ ··· + u + 1
c
7
, c
10
, c
11
u
38
5u
37
+ ··· 25u + 3
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
38
+ 17y
37
+ ··· + 3y + 1
c
2
y
38
+ 9y
37
+ ··· + 19y + 1
c
3
, c
4
, c
8
c
9
y
38
+ 41y
37
+ ··· + 3y + 1
c
6
y
38
+ y
37
+ ··· + 35y + 1
c
7
, c
10
, c
11
y
38
+ 37y
37
+ ··· + 59y + 9
8