11a
99
(K11a
99
)
A knot diagram
1
Linearized knot diagam
6 1 10 8 2 3 11 5 7 4 9
Solving Sequence
2,6
1 3
7,9
10 5 8 4 11
c
1
c
2
c
6
c
9
c
5
c
8
c
4
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
27
26u
26
+ ··· + 2b 6, 9u
27
+ 72u
26
+ ··· + 4a + 84, u
28
+ 6u
27
+ ··· + 26u + 4i
I
u
2
= h5947395u
9
a
3
110563267u
9
a
2
+ ··· + 261341462a 88347236, u
9
a
3
5u
9
a
2
+ ··· 8a 7,
u
10
u
9
+ 3u
8
3u
7
+ 5u
6
5u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1i
I
u
3
= hu
11
u
10
+ 4u
9
3u
8
+ 7u
7
4u
6
+ 4u
5
u
3
+ 3u
2
+ b 2u + 3,
2u
12
+ u
11
6u
10
+ u
9
8u
8
u
7
2u
6
4u
5
+ u
4
2u
3
+ a 2u 2,
u
13
u
12
+ 4u
11
3u
10
+ 7u
9
4u
8
+ 5u
7
u
6
+ 2u
4
2u
3
+ 3u
2
u + 1i
I
u
4
= ha
3
u a
2
u
2
+ a
2
u + u
2
a a
2
+ 4u
2
+ b + a 2u + 5,
a
4
3a
2
u
2
+ a
3
+ 3a
2
u 3u
2
a 4a
2
+ 3au + 9u
2
4a 6u + 13, u
3
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3u
27
26u
26
+ · · · + 2b 6, 9u
27
+ 72u
26
+ · · · + 4a + 84, u
28
+
6u
27
+ · · · + 26u + 4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
4
a
7
=
u
5
2u
3
u
u
7
u
5
+ u
a
9
=
9
4
u
27
18u
26
+ ···
513
4
u 21
3
2
u
27
+ 13u
26
+ ··· +
77
2
u + 3
a
10
=
11
4
u
27
+ 14u
26
+ ··· +
143
4
u + 5
5
2
u
27
15u
26
+ ···
127
2
u 11
a
5
=
u
u
a
8
=
21
4
u
27
29u
26
+ ···
449
4
u 19
9
2
u
27
+ 24u
26
+ ··· +
45
2
u + 1
a
4
=
1
2
u
27
3
2
u
26
+ ···
41
2
u
7
2
5
2
u
27
14u
26
+ ···
55
2
u 4
a
11
=
1
2
u
27
+
9
2
u
26
+ ··· +
73
2
u +
13
2
1
2
u
27
3u
26
+ ··· +
7
2
u + 2
a
11
=
1
2
u
27
+
9
2
u
26
+ ··· +
73
2
u +
13
2
1
2
u
27
3u
26
+ ··· +
7
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
27
78u
26
316u
25
906u
24
2126u
23
4197u
22
7359u
21
11710u
20
17291u
19
23878u
18
30954u
17
37835u
16
43786u
15
48249u
14
50700u
13
50669u
12
48099u
11
43213u
10
36755u
9
29326u
8
21691u
7
14716u
6
9106u
5
5172u
4
2641u
3
1112u
2
342u 54
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
28
6u
27
+ ··· 26u + 4
c
2
u
28
+ 14u
27
+ ··· + 36u + 16
c
3
, c
4
, c
8
c
10
u
28
+ u
27
+ ··· + 3u + 1
c
6
u
28
+ 6u
27
+ ··· + 1800u + 712
c
7
u
28
29u
27
+ ··· 118784u + 8192
c
9
, c
11
u
28
2u
27
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
28
+ 14y
27
+ ··· + 36y + 16
c
2
y
28
2y
27
+ ··· 240y + 256
c
3
, c
4
, c
8
c
10
y
28
23y
27
+ ··· + 3y + 1
c
6
y
28
18y
27
+ ··· + 1943360y + 506944
c
7
y
28
+ 3y
27
+ ··· + 486539264y + 67108864
c
9
, c
11
y
28
+ 6y
27
+ ··· + 40y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.007890 + 0.244456I
a = 0.648218 + 0.649776I
b = 0.484897 0.362346I
5.75558 + 1.16478I 9.81484 5.25007I
u = 1.007890 0.244456I
a = 0.648218 0.649776I
b = 0.484897 + 0.362346I
5.75558 1.16478I 9.81484 + 5.25007I
u = 0.450069 + 0.945327I
a = 0.97063 1.16479I
b = 0.92359 + 1.77022I
1.30775 + 2.44749I 4.69640 9.53101I
u = 0.450069 0.945327I
a = 0.97063 + 1.16479I
b = 0.92359 1.77022I
1.30775 2.44749I 4.69640 + 9.53101I
u = 0.823545 + 0.669603I
a = 0.244511 + 1.089610I
b = 0.807023 0.636285I
2.90686 3.71581I 3.96472 + 7.21162I
u = 0.823545 0.669603I
a = 0.244511 1.089610I
b = 0.807023 + 0.636285I
2.90686 + 3.71581I 3.96472 7.21162I
u = 0.877743 + 0.205256I
a = 1.36751 0.95489I
b = 0.332382 + 1.109600I
7.91511 + 11.38140I 4.44423 5.90932I
u = 0.877743 0.205256I
a = 1.36751 + 0.95489I
b = 0.332382 1.109600I
7.91511 11.38140I 4.44423 + 5.90932I
u = 0.693563 + 0.915180I
a = 1.289000 0.358838I
b = 1.64479 0.73716I
3.67868 + 9.29135I 4.02619 9.42557I
u = 0.693563 0.915180I
a = 1.289000 + 0.358838I
b = 1.64479 + 0.73716I
3.67868 9.29135I 4.02619 + 9.42557I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.417630 + 1.105260I
a = 0.990060 0.503261I
b = 0.343945 + 0.624215I
2.12382 1.70105I 2.95787 + 0.05705I
u = 0.417630 1.105260I
a = 0.990060 + 0.503261I
b = 0.343945 0.624215I
2.12382 + 1.70105I 2.95787 0.05705I
u = 0.483475 + 1.130610I
a = 1.03565 + 1.24896I
b = 0.38060 1.45896I
1.61917 5.94948I 1.73292 + 6.08838I
u = 0.483475 1.130610I
a = 1.03565 1.24896I
b = 0.38060 + 1.45896I
1.61917 + 5.94948I 1.73292 6.08838I
u = 0.433444 + 0.634083I
a = 1.80511 0.76581I
b = 1.031200 + 0.788265I
2.24308 + 1.31021I 4.48172 + 2.40271I
u = 0.433444 0.634083I
a = 1.80511 + 0.76581I
b = 1.031200 0.788265I
2.24308 1.31021I 4.48172 2.40271I
u = 0.305330 + 0.675911I
a = 0.630555 + 0.172210I
b = 0.360299 + 0.412592I
0.257625 1.154960I 2.96071 + 5.77634I
u = 0.305330 0.675911I
a = 0.630555 0.172210I
b = 0.360299 0.412592I
0.257625 + 1.154960I 2.96071 5.77634I
u = 0.315106 + 1.262770I
a = 0.488001 + 0.002907I
b = 0.100408 + 1.021430I
12.6068 + 7.4137I 9.32623 3.45211I
u = 0.315106 1.262770I
a = 0.488001 0.002907I
b = 0.100408 1.021430I
12.6068 7.4137I 9.32623 + 3.45211I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.554721 + 1.203480I
a = 1.83799 0.92930I
b = 1.96223 + 2.11484I
10.9151 16.6086I 7.19926 + 9.00617I
u = 0.554721 1.203480I
a = 1.83799 + 0.92930I
b = 1.96223 2.11484I
10.9151 + 16.6086I 7.19926 9.00617I
u = 0.243939 + 1.326510I
a = 0.0674133 + 0.0418679I
b = 0.033141 1.007620I
11.26130 3.02152I 13.62827 + 2.14467I
u = 0.243939 1.326510I
a = 0.0674133 0.0418679I
b = 0.033141 + 1.007620I
11.26130 + 3.02152I 13.62827 2.14467I
u = 0.608424 + 0.177740I
a = 0.665110 0.192137I
b = 0.474963 0.907755I
1.04620 + 1.66789I 3.14449 2.66380I
u = 0.608424 0.177740I
a = 0.665110 + 0.192137I
b = 0.474963 + 0.907755I
1.04620 1.66789I 3.14449 + 2.66380I
u = 0.586363 + 1.242360I
a = 1.064320 + 0.381059I
b = 1.41368 1.21973I
8.88695 6.88314I 9.37455 + 6.80974I
u = 0.586363 1.242360I
a = 1.064320 0.381059I
b = 1.41368 + 1.21973I
8.88695 + 6.88314I 9.37455 6.80974I
7
II. I
u
2
= h5.95 × 10
6
a
3
u
9
1.11 × 10
8
a
2
u
9
+ · · · + 2.61 × 10
8
a 8.83 ×
10
7
, u
9
a
3
5u
9
a
2
+ · · · 8a 7, u
10
u
9
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
4
a
7
=
u
5
2u
3
u
u
7
u
5
+ u
a
9
=
a
0.0456620a
3
u
9
+ 0.848865a
2
u
9
+ ··· 2.00649a + 0.678298
a
10
=
2.14382a
3
u
9
+ 1.09367a
2
u
9
+ ··· 1.51933a + 0.196840
0.260987a
3
u
9
+ 0.338504a
2
u
9
+ ··· + 0.870243a + 2.69447
a
5
=
u
u
a
8
=
0.0644237a
3
u
9
+ 0.101106a
2
u
9
+ ··· 1.19004a 1.96492
0.110086a
3
u
9
+ 0.747759a
2
u
9
+ ··· + 0.183553a + 2.64322
a
4
=
0.770676a
3
u
9
0.285432a
2
u
9
+ ··· 0.188169a 1.85717
0.0386232a
3
u
9
+ 0.223455a
2
u
9
+ ··· + 1.74875a + 3.11581
a
11
=
0.277440a
3
u
9
0.327129a
2
u
9
+ ··· 0.0644294a + 0.411808
0.285316a
3
u
9
+ 0.175678a
2
u
9
+ ··· + 0.268957a 0.519132
a
11
=
0.277440a
3
u
9
0.327129a
2
u
9
+ ··· 0.0644294a + 0.411808
0.285316a
3
u
9
+ 0.175678a
2
u
9
+ ··· + 0.268957a 0.519132
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6098888
7661669
u
9
a
3
21091308
7661669
u
9
a
2
+ ··· +
116819364
7661669
a +
59639590
7661669
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 3u
2
+ 2u + 1)
4
c
2
(u
10
+ 5u
9
+ 13u
8
+ 19u
7
+ 17u
6
+ 7u
5
2u
3
+ u
2
+ 2u + 1)
4
c
3
, c
4
, c
8
c
10
u
40
u
39
+ ··· 18u
2
+ 1
c
6
(u
10
+ 2u
9
u
8
5u
7
3u
6
+ 4u
5
+ 12u
4
+ 13u
3
+ 5u
2
+ u + 2)
4
c
7
(u
2
+ u + 1)
20
c
9
, c
11
u
40
+ 11u
39
+ ··· + 644u + 61
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
10
+ 5y
9
+ 13y
8
+ 19y
7
+ 17y
6
+ 7y
5
2y
3
+ y
2
+ 2y + 1)
4
c
2
(y
10
+ y
9
+ 13y
8
+ 11y
7
+ 45y
6
+ 35y
5
+ 12y
4
+ 2y
3
+ 9y
2
2y + 1)
4
c
3
, c
4
, c
8
c
10
y
40
33y
39
+ ··· 36y + 1
c
6
(y
10
6y
9
+ ··· + 19y + 4)
4
c
7
(y
2
+ y + 1)
20
c
9
, c
11
y
40
+ 11y
39
+ ··· + 62528y + 3721
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.584958 + 0.771492I
a = 0.811252 0.684607I
b = 0.326566 + 1.346250I
0.002387 0.280172I 1.136314 + 0.057227I
u = 0.584958 + 0.771492I
a = 0.13825 + 1.48131I
b = 0.856552 0.765235I
0.002387 0.280172I 1.136314 + 0.057227I
u = 0.584958 + 0.771492I
a = 1.41803 0.77086I
b = 1.87810 0.26325I
0.00239 4.33994I 1.13631 + 6.98543I
u = 0.584958 + 0.771492I
a = 1.63324 0.44978I
b = 0.783367 + 0.997354I
0.00239 4.33994I 1.13631 + 6.98543I
u = 0.584958 0.771492I
a = 0.811252 + 0.684607I
b = 0.326566 1.346250I
0.002387 + 0.280172I 1.136314 0.057227I
u = 0.584958 0.771492I
a = 0.13825 1.48131I
b = 0.856552 + 0.765235I
0.002387 + 0.280172I 1.136314 0.057227I
u = 0.584958 0.771492I
a = 1.41803 + 0.77086I
b = 1.87810 + 0.26325I
0.00239 + 4.33994I 1.13631 6.98543I
u = 0.584958 0.771492I
a = 1.63324 + 0.44978I
b = 0.783367 0.997354I
0.00239 + 4.33994I 1.13631 6.98543I
u = 0.248527 + 0.782547I
a = 0.528657 + 0.220233I
b = 0.80276 1.85708I
5.38286 + 3.26157I 6.90177 8.91318I
u = 0.248527 + 0.782547I
a = 0.77879 + 1.65055I
b = 0.1103870 0.0163537I
5.38286 0.79819I 6.90177 1.98497I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.248527 + 0.782547I
a = 2.16490 1.33388I
b = 2.78977 + 0.25266I
5.38286 0.79819I 6.90177 1.98497I
u = 0.248527 + 0.782547I
a = 2.27476 + 2.17074I
b = 1.93781 0.58149I
5.38286 + 3.26157I 6.90177 8.91318I
u = 0.248527 0.782547I
a = 0.528657 0.220233I
b = 0.80276 + 1.85708I
5.38286 3.26157I 6.90177 + 8.91318I
u = 0.248527 0.782547I
a = 0.77879 1.65055I
b = 0.1103870 + 0.0163537I
5.38286 + 0.79819I 6.90177 + 1.98497I
u = 0.248527 0.782547I
a = 2.16490 + 1.33388I
b = 2.78977 0.25266I
5.38286 + 0.79819I 6.90177 + 1.98497I
u = 0.248527 0.782547I
a = 2.27476 2.17074I
b = 1.93781 + 0.58149I
5.38286 3.26157I 6.90177 + 8.91318I
u = 0.761643 + 0.208049I
a = 0.888121 0.198095I
b = 0.169145 1.209710I
2.52120 5.50828I 2.80497 + 6.25925I
u = 0.761643 + 0.208049I
a = 1.109160 + 0.691872I
b = 0.405801 0.684900I
2.52120 1.44851I 2.80497 0.66896I
u = 0.761643 + 0.208049I
a = 0.465789 0.420142I
b = 0.307020 + 0.341147I
2.52120 1.44851I 2.80497 0.66896I
u = 0.761643 + 0.208049I
a = 1.44027 1.30172I
b = 0.177943 + 1.296040I
2.52120 5.50828I 2.80497 + 6.25925I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.761643 0.208049I
a = 0.888121 + 0.198095I
b = 0.169145 + 1.209710I
2.52120 + 5.50828I 2.80497 6.25925I
u = 0.761643 0.208049I
a = 1.109160 0.691872I
b = 0.405801 + 0.684900I
2.52120 + 1.44851I 2.80497 + 0.66896I
u = 0.761643 0.208049I
a = 0.465789 + 0.420142I
b = 0.307020 0.341147I
2.52120 + 1.44851I 2.80497 + 0.66896I
u = 0.761643 0.208049I
a = 1.44027 + 1.30172I
b = 0.177943 1.296040I
2.52120 + 5.50828I 2.80497 6.25925I
u = 0.449566 + 1.164790I
a = 0.79423 1.18245I
b = 0.42710 + 2.17011I
9.81146 6.17573I 10.98134 + 7.44010I
u = 0.449566 + 1.164790I
a = 0.152868 0.428323I
b = 1.107140 0.677603I
9.81146 2.11597I 10.98134 + 0.51190I
u = 0.449566 + 1.164790I
a = 1.92707 + 0.90418I
b = 1.82941 2.34062I
9.81146 6.17573I 10.98134 + 7.44010I
u = 0.449566 + 1.164790I
a = 1.75450 1.78926I
b = 2.08774 + 2.71705I
9.81146 2.11597I 10.98134 + 0.51190I
u = 0.449566 1.164790I
a = 0.79423 + 1.18245I
b = 0.42710 2.17011I
9.81146 + 6.17573I 10.98134 7.44010I
u = 0.449566 1.164790I
a = 0.152868 + 0.428323I
b = 1.107140 + 0.677603I
9.81146 + 2.11597I 10.98134 0.51190I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.449566 1.164790I
a = 1.92707 0.90418I
b = 1.82941 + 2.34062I
9.81146 + 6.17573I 10.98134 7.44010I
u = 0.449566 1.164790I
a = 1.75450 + 1.78926I
b = 2.08774 2.71705I
9.81146 + 2.11597I 10.98134 0.51190I
u = 0.524355 + 1.163410I
a = 0.740427 + 0.151085I
b = 0.650836 0.191721I
5.31595 + 6.25643I 6.17560 2.68471I
u = 0.524355 + 1.163410I
a = 1.43496 + 0.55642I
b = 1.51204 1.58158I
5.31595 + 6.25643I 6.17560 2.68471I
u = 0.524355 + 1.163410I
a = 1.20657 + 1.25082I
b = 0.33739 1.88156I
5.31595 + 10.31620I 6.17560 9.61291I
u = 0.524355 + 1.163410I
a = 2.16655 1.00309I
b = 2.30372 + 2.02238I
5.31595 + 10.31620I 6.17560 9.61291I
u = 0.524355 1.163410I
a = 0.740427 0.151085I
b = 0.650836 + 0.191721I
5.31595 6.25643I 6.17560 + 2.68471I
u = 0.524355 1.163410I
a = 1.43496 0.55642I
b = 1.51204 + 1.58158I
5.31595 6.25643I 6.17560 + 2.68471I
u = 0.524355 1.163410I
a = 1.20657 1.25082I
b = 0.33739 + 1.88156I
5.31595 10.31620I 6.17560 + 9.61291I
u = 0.524355 1.163410I
a = 2.16655 + 1.00309I
b = 2.30372 2.02238I
5.31595 10.31620I 6.17560 + 9.61291I
14
III.
I
u
3
= hu
11
u
10
+ · · · + b + 3, 2u
12
+ u
11
+ · · · + a 2, u
13
u
12
+ · · · u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
4
a
7
=
u
5
2u
3
u
u
7
u
5
+ u
a
9
=
2u
12
u
11
+ 6u
10
u
9
+ 8u
8
+ u
7
+ 2u
6
+ 4u
5
u
4
+ 2u
3
+ 2u + 2
u
11
+ u
10
4u
9
+ 3u
8
7u
7
+ 4u
6
4u
5
+ u
3
3u
2
+ 2u 3
a
10
=
2u
12
u
11
+ 6u
10
2u
9
+ 8u
8
u
7
+ 2u
6
+ 2u
5
u
4
+ 2u
3
+ 2u + 2
u
11
+ u
10
3u
9
+ 3u
8
5u
7
+ 4u
6
2u
5
+ u
3
2u
2
+ 2u 2
a
5
=
u
u
a
8
=
u
12
+ 3u
10
+ u
9
+ 4u
8
+ 3u
7
+ u
6
+ 3u
5
+ u
2
+ 2
u
12
2u
11
+ ··· + 4u 3
a
4
=
u
12
u
11
2u
10
4u
9
2u
8
6u
7
3u
5
u
4
+ u
3
2u
2
3
2u
12
+ 3u
11
+ ··· 5u + 3
a
11
=
u
12
2u
11
+ ··· + 3u 2
2u
12
+ 2u
11
+ ··· 4u + 1
a
11
=
u
12
2u
11
+ ··· + 3u 2
2u
12
+ 2u
11
+ ··· 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
4u
9
+ 6u
8
8u
7
+ 7u
6
5u
5
+ u
4
+ 6u
3
3u
2
+ 3u 9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
u
12
+ ··· u + 1
c
2
u
13
+ 7u
12
+ ··· 5u 1
c
3
, c
8
u
13
u
12
+ ··· + 3u + 1
c
4
, c
10
u
13
+ u
12
+ ··· + 3u 1
c
5
u
13
+ u
12
+ ··· u 1
c
6
u
13
u
12
+ ··· + u 1
c
7
u
13
2u
12
+ ··· + 2u 1
c
9
, c
11
u
13
+ 2u
12
+ ··· + 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
13
+ 7y
12
+ ··· 5y 1
c
2
y
13
y
12
+ ··· + 7y 1
c
3
, c
4
, c
8
c
10
y
13
15y
12
+ ··· 9y 1
c
6
y
13
9y
12
+ ··· 11y 1
c
7
y
13
+ 2y
12
+ ··· 2y 1
c
9
, c
11
y
13
+ 2y
12
+ ··· 2y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.429348 + 0.836369I
a = 1.06443 0.95489I
b = 0.90233 + 1.19418I
1.50284 1.80144I 0.975171 + 0.624326I
u = 0.429348 0.836369I
a = 1.06443 + 0.95489I
b = 0.90233 1.19418I
1.50284 + 1.80144I 0.975171 0.624326I
u = 0.777700 + 0.380482I
a = 0.544452 + 0.841459I
b = 0.722544 0.675961I
3.52105 2.68668I 6.71015 + 2.69355I
u = 0.777700 0.380482I
a = 0.544452 0.841459I
b = 0.722544 + 0.675961I
3.52105 + 2.68668I 6.71015 2.69355I
u = 0.851574
a = 1.29542
b = 0.236834
5.58548 6.40050
u = 0.354755 + 1.099910I
a = 0.261043 1.280070I
b = 0.463549 + 0.404379I
7.44002 0.06234I 10.48891 0.49082I
u = 0.354755 1.099910I
a = 0.261043 + 1.280070I
b = 0.463549 0.404379I
7.44002 + 0.06234I 10.48891 + 0.49082I
u = 0.432945 + 1.190570I
a = 0.574206 + 0.848947I
b = 0.88235 1.94320I
9.24726 4.36417I 9.35230 + 3.32302I
u = 0.432945 1.190570I
a = 0.574206 0.848947I
b = 0.88235 + 1.94320I
9.24726 + 4.36417I 9.35230 3.32302I
u = 0.555159 + 1.145130I
a = 1.45591 + 0.17932I
b = 1.45752 1.05620I
5.89830 + 7.73676I 8.25887 7.75024I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.555159 1.145130I
a = 1.45591 0.17932I
b = 1.45752 + 1.05620I
5.89830 7.73676I 8.25887 + 7.75024I
u = 0.100465 + 0.707437I
a = 2.08183 + 1.26835I
b = 1.83693 + 0.64675I
5.50214 + 2.30256I 8.51436 0.38924I
u = 0.100465 0.707437I
a = 2.08183 1.26835I
b = 1.83693 0.64675I
5.50214 2.30256I 8.51436 + 0.38924I
19
IV.
I
u
4
= h−a
2
u
2
+ u
2
a + · · · + a + 5, 3a
2
u
2
3u
2
a + · · · 4a + 13, u
3
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
3
=
u
2
+ 1
u
2
u
a
7
=
u
2
+ 1
u
2
a
9
=
a
a
3
u + a
2
u
2
a
2
u u
2
a + a
2
4u
2
a + 2u 5
a
10
=
a
3
u
2
+ 2a
2
u
2
+ a
3
a
2
u u
2
a + 3a
2
7u
2
a + 5u 11
a
3
u
2
a
3
u a
2
u + au 2u
2
+ u 1
a
5
=
u
u
a
8
=
a
3
u + a
3
+ u
2
a + a
2
+ au u
2
+ a + 2u 2
2a
3
u + a
2
u
2
a
3
a
2
u 2u
2
a au 3u
2
a 3
a
4
=
a
3
u
2
3a
2
u
2
+ ··· + 3a + 14
a
3
u a
3
2a
2
u 2a
2
au 2u + 2
a
11
=
a
3
u
2
+ a
2
u
2
+ a
3
a
2
u u
2
a + 2a
2
+ au 6u
2
2a + 4u 8
a
2
u
2
2
a
11
=
a
3
u
2
+ a
2
u
2
+ a
3
a
2
u u
2
a + 2a
2
+ au 6u
2
2a + 4u 8
a
2
u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
u + 4a
2
u
2
4a
2
u 4u
2
a + 4a
2
16u
2
4a + 8u 30
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
3
+ u 1)
4
c
2
(u
3
+ 2u
2
+ u 1)
4
c
3
, c
4
, c
8
c
10
u
12
6u
10
+ ··· + 8u + 1
c
6
(u 1)
12
c
7
(u
2
+ u + 1)
6
c
9
, c
11
u
12
+ 4u
11
+ ··· + 32u + 13
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
+ 2y
2
+ y 1)
4
c
2
(y
3
2y
2
+ 5y 1)
4
c
3
, c
4
, c
8
c
10
y
12
12y
11
+ ··· 36y + 1
c
6
(y 1)
12
c
7
(y
2
+ y + 1)
6
c
9
, c
11
y
12
+ 8y
11
+ ··· + 848y + 169
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.341164 + 1.161540I
a = 1.034830 + 0.098333I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.341164 + 1.161540I
a = 0.534830 0.964359I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.341164 + 1.161540I
a = 0.478220 + 1.030980I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.341164 + 1.161540I
a = 0.021780 0.164953I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.341164 1.161540I
a = 1.034830 0.098333I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.341164 1.161540I
a = 0.534830 + 0.964359I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.341164 1.161540I
a = 0.478220 1.030980I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.341164 1.161540I
a = 0.021780 + 0.164953I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.682328
a = 1.83446 + 0.06511I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.682328
a = 1.83446 0.06511I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.682328
a = 2.33446 + 0.93114I
b = 0.500000 0.866025I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.682328
a = 2.33446 0.93114I
b = 0.500000 + 0.866025I
6.57974 2.02988I 8.00000 + 3.46410I
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u 1)
4
· (u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 3u
2
+ 2u + 1)
4
· (u
13
u
12
+ ··· u + 1)(u
28
6u
27
+ ··· 26u + 4)
c
2
(u
3
+ 2u
2
+ u 1)
4
· (u
10
+ 5u
9
+ 13u
8
+ 19u
7
+ 17u
6
+ 7u
5
2u
3
+ u
2
+ 2u + 1)
4
· (u
13
+ 7u
12
+ ··· 5u 1)(u
28
+ 14u
27
+ ··· + 36u + 16)
c
3
, c
8
(u
12
6u
10
+ ··· + 8u + 1)(u
13
u
12
+ ··· + 3u + 1)
· (u
28
+ u
27
+ ··· + 3u + 1)(u
40
u
39
+ ··· 18u
2
+ 1)
c
4
, c
10
(u
12
6u
10
+ ··· + 8u + 1)(u
13
+ u
12
+ ··· + 3u 1)
· (u
28
+ u
27
+ ··· + 3u + 1)(u
40
u
39
+ ··· 18u
2
+ 1)
c
5
(u
3
+ u 1)
4
· (u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 4u
4
+ 4u
3
+ 3u
2
+ 2u + 1)
4
· (u
13
+ u
12
+ ··· u 1)(u
28
6u
27
+ ··· 26u + 4)
c
6
(u 1)
12
· (u
10
+ 2u
9
u
8
5u
7
3u
6
+ 4u
5
+ 12u
4
+ 13u
3
+ 5u
2
+ u + 2)
4
· (u
13
u
12
+ ··· + u 1)(u
28
+ 6u
27
+ ··· + 1800u + 712)
c
7
((u
2
+ u + 1)
26
)(u
13
2u
12
+ ··· + 2u 1)
· (u
28
29u
27
+ ··· 118784u + 8192)
c
9
, c
11
(u
12
+ 4u
11
+ ··· + 32u + 13)(u
13
+ 2u
12
+ ··· + 2u + 1)
· (u
28
2u
27
+ ··· 2u + 1)(u
40
+ 11u
39
+ ··· + 644u + 61)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
+ 2y
2
+ y 1)
4
· (y
10
+ 5y
9
+ 13y
8
+ 19y
7
+ 17y
6
+ 7y
5
2y
3
+ y
2
+ 2y + 1)
4
· (y
13
+ 7y
12
+ ··· 5y 1)(y
28
+ 14y
27
+ ··· + 36y + 16)
c
2
(y
3
2y
2
+ 5y 1)
4
· (y
10
+ y
9
+ 13y
8
+ 11y
7
+ 45y
6
+ 35y
5
+ 12y
4
+ 2y
3
+ 9y
2
2y + 1)
4
· (y
13
y
12
+ ··· + 7y 1)(y
28
2y
27
+ ··· 240y + 256)
c
3
, c
4
, c
8
c
10
(y
12
12y
11
+ ··· 36y + 1)(y
13
15y
12
+ ··· 9y 1)
· (y
28
23y
27
+ ··· + 3y + 1)(y
40
33y
39
+ ··· 36y + 1)
c
6
((y 1)
12
)(y
10
6y
9
+ ··· + 19y + 4)
4
(y
13
9y
12
+ ··· 11y 1)
· (y
28
18y
27
+ ··· + 1943360y + 506944)
c
7
((y
2
+ y + 1)
26
)(y
13
+ 2y
12
+ ··· 2y 1)
· (y
28
+ 3y
27
+ ··· + 486539264y + 67108864)
c
9
, c
11
(y
12
+ 8y
11
+ ··· + 848y + 169)(y
13
+ 2y
12
+ ··· 2y 1)
· (y
28
+ 6y
27
+ ··· + 40y + 1)(y
40
+ 11y
39
+ ··· + 62528y + 3721)
26