11a
100
(K11a
100
)
A knot diagram
1
Linearized knot diagam
6 1 10 8 2 3 9 5 11 4 7
Solving Sequence
4,10 7,11
1 3 2 6 9 8 5
c
10
c
11
c
3
c
2
c
6
c
9
c
7
c
4
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
u
29
+ ··· + 8b + u, u
4
+ u
2
+ a 1, u
31
u
30
+ ··· + 2u 1i
I
u
2
= h8.05572 × 10
18
u
45
1.78051 × 10
19
u
44
+ ··· + 3.67198 × 10
19
b 7.81561 × 10
18
,
9.93809 × 10
19
u
45
7.04855 × 10
19
u
44
+ ··· + 3.67198 × 10
19
a 2.19276 × 10
20
, u
46
u
45
+ ··· 4u + 1i
I
u
3
= hb
4
+ 4b
3
+ 4b
2
+ 1, a + 1, u + 1i
I
u
4
= hb
3
+ 3b
2
+ 3b + 1, a + 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
u
29
+ · · · + 8b + u, u
4
+ u
2
+ a 1, u
31
u
30
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
7
=
u
4
u
2
+ 1
1
8
u
30
+
1
8
u
29
+ ···
3
4
u
2
1
8
u
a
11
=
1
u
2
a
1
=
1
8
u
30
+
1
8
u
29
+ ···
1
8
u + 1
u
30
9
8
u
29
+ ··· +
3
2
u
1
8
a
3
=
u
u
a
2
=
1
2
u
30
+
1
8
u
29
+ ··· +
1
2
u +
3
8
13
8
u
30
27
8
u
29
+ ··· +
79
8
u 3
a
6
=
1
8
u
30
+
1
8
u
29
+ ···
1
8
u + 1
1
4
u
30
+
1
4
u
29
+ ···
3
2
u
2
1
4
u
a
9
=
u
2
+ 1
u
4
a
8
=
1
1
8
u
30
+
1
8
u
29
+ ···
3
4
u
2
1
8
u
a
5
=
u
1
8
u
29
1
8
u
28
+ ··· +
3
4
u +
1
8
a
5
=
u
1
8
u
29
1
8
u
28
+ ··· +
3
4
u +
1
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
30
17
4
u
29
+ ··· +
49
2
u
69
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
31
3u
30
+ ··· 6u + 2
c
2
u
31
+ 15u
30
+ ··· 4u 4
c
3
, c
4
, c
8
c
10
u
31
+ u
30
+ ··· + 2u + 1
c
6
u
31
+ 3u
30
+ ··· + 34u + 2
c
7
, c
9
u
31
+ 13u
30
+ ··· + 8u + 1
c
11
u
31
15u
30
+ ··· 1566u + 158
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
31
+ 15y
30
+ ··· 4y 4
c
2
y
31
+ 3y
30
+ ··· + 112y 16
c
3
, c
4
, c
8
c
10
y
31
13y
30
+ ··· + 8y 1
c
6
y
31
9y
30
+ ··· + 92y 4
c
7
, c
9
y
31
+ 19y
30
+ ··· 4y 1
c
11
y
31
+ 3y
30
+ ··· 219108y 24964
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.671875 + 0.755704I
a = 0.102801 + 1.258530I
b = 1.26875 + 0.87692I
4.33630 + 2.18000I 1.38223 2.85674I
u = 0.671875 0.755704I
a = 0.102801 1.258530I
b = 1.26875 0.87692I
4.33630 2.18000I 1.38223 + 2.85674I
u = 0.529243 + 0.781629I
a = 0.75581 + 1.37479I
b = 1.228420 + 0.141119I
3.92659 0.20488I 1.21175 1.93479I
u = 0.529243 0.781629I
a = 0.75581 1.37479I
b = 1.228420 0.141119I
3.92659 + 0.20488I 1.21175 + 1.93479I
u = 0.473734 + 0.815861I
a = 1.03834 1.45511I
b = 1.186120 + 0.184502I
1.98591 + 5.18766I 4.29263 2.87164I
u = 0.473734 0.815861I
a = 1.03834 + 1.45511I
b = 1.186120 0.184502I
1.98591 5.18766I 4.29263 + 2.87164I
u = 0.739148 + 0.756876I
a = 0.224684 1.178240I
b = 1.18263 1.25006I
2.80358 7.15169I 4.41360 + 8.13736I
u = 0.739148 0.756876I
a = 0.224684 + 1.178240I
b = 1.18263 + 1.25006I
2.80358 + 7.15169I 4.41360 8.13736I
u = 0.998773 + 0.420018I
a = 0.149196 0.538864I
b = 1.154630 + 0.334617I
5.71846 1.00535I 12.20049 2.17594I
u = 0.998773 0.420018I
a = 0.149196 + 0.538864I
b = 1.154630 0.334617I
5.71846 + 1.00535I 12.20049 + 2.17594I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.001180 + 0.470735I
a = 0.059625 + 0.529287I
b = 0.707502 0.184028I
2.76836 3.54859I 8.60512 + 5.21629I
u = 1.001180 0.470735I
a = 0.059625 0.529287I
b = 0.707502 + 0.184028I
2.76836 + 3.54859I 8.60512 5.21629I
u = 1.060830 + 0.466616I
a = 0.063939 0.807099I
b = 0.799755 0.463575I
6.59629 + 7.25038I 13.7743 8.1656I
u = 1.060830 0.466616I
a = 0.063939 + 0.807099I
b = 0.799755 + 0.463575I
6.59629 7.25038I 13.7743 + 8.1656I
u = 1.045460 + 0.641230I
a = 1.014590 + 0.487534I
b = 1.013330 0.611771I
0.83772 3.66094I 6.42863 + 2.29820I
u = 1.045460 0.641230I
a = 1.014590 0.487534I
b = 1.013330 + 0.611771I
0.83772 + 3.66094I 6.42863 2.29820I
u = 0.551309 + 0.517564I
a = 0.639561 0.529508I
b = 0.464527 0.522513I
0.67493 1.41882I 8.11819 + 4.23209I
u = 0.551309 0.517564I
a = 0.639561 + 0.529508I
b = 0.464527 + 0.522513I
0.67493 + 1.41882I 8.11819 4.23209I
u = 1.093950 + 0.638128I
a = 1.115430 0.808402I
b = 1.54639 + 0.11518I
1.61779 + 8.62066I 5.39345 7.96064I
u = 1.093950 0.638128I
a = 1.115430 + 0.808402I
b = 1.54639 0.11518I
1.61779 8.62066I 5.39345 + 7.96064I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.150290 + 0.579146I
a = 0.78731 + 1.29973I
b = 1.32274 + 1.36596I
4.83518 8.17855I 13.0634 + 5.6311I
u = 1.150290 0.579146I
a = 0.78731 1.29973I
b = 1.32274 1.36596I
4.83518 + 8.17855I 13.0634 5.6311I
u = 1.159090 + 0.618451I
a = 1.09291 1.32186I
b = 2.11523 1.06499I
0.06269 + 11.03950I 6.94221 7.13356I
u = 1.159090 0.618451I
a = 1.09291 + 1.32186I
b = 2.11523 + 1.06499I
0.06269 11.03950I 6.94221 + 7.13356I
u = 0.673147 + 0.057260I
a = 0.746573 + 0.007732I
b = 1.032490 + 0.376155I
4.34804 + 3.91818I 8.50345 5.07903I
u = 0.673147 0.057260I
a = 0.746573 0.007732I
b = 1.032490 0.376155I
4.34804 3.91818I 8.50345 + 5.07903I
u = 1.179340 + 0.616871I
a = 1.10660 + 1.48500I
b = 2.36523 + 1.45569I
2.4315 16.1755I 10.0749 + 10.7687I
u = 1.179340 0.616871I
a = 1.10660 1.48500I
b = 2.36523 1.45569I
2.4315 + 16.1755I 10.0749 10.7687I
u = 0.581693
a = 0.776125
b = 0.645714
1.33697 6.39560
u = 0.255598 + 0.492030I
a = 1.144740 0.340444I
b = 0.225939 0.088212I
0.56339 1.34523I 5.39791 + 4.30982I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.255598 0.492030I
a = 1.144740 + 0.340444I
b = 0.225939 + 0.088212I
0.56339 + 1.34523I 5.39791 4.30982I
8
II.
I
u
2
= h8.06 × 10
18
u
45
1.78 × 10
19
u
44
+ · · · + 3.67 × 10
19
b 7.82 × 10
18
, 9.94 ×
10
19
u
45
7.05×10
19
u
44
+· · ·+3.67×10
19
a2.19×10
20
, u
46
u
45
+· · ·4u+1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
7
=
2.70647u
45
+ 1.91955u
44
+ ··· 10.9263u + 5.97160
0.219384u
45
+ 0.484891u
44
+ ··· 1.60887u + 0.212845
a
11
=
1
u
2
a
1
=
3.33142u
45
2.00063u
44
+ ··· + 10.3559u 4.02342
1.22417u
45
1.02774u
44
+ ··· + 3.03021u 0.595457
a
3
=
u
u
a
2
=
4.37249u
45
1.83378u
44
+ ··· + 15.1410u 3.15401
2.88125u
45
1.87484u
44
+ ··· + 10.2725u 3.36688
a
6
=
3.03496u
45
+ 2.13094u
44
+ ··· 9.20367u + 4.91918
0.547882u
45
+ 0.696284u
44
+ ··· + 0.113735u 0.839578
a
9
=
u
2
+ 1
u
4
a
8
=
2.33885u
45
+ 1.49981u
44
+ ··· 8.74130u + 5.70663
0.536038u
45
0.110109u
44
+ ··· 1.01730u 0.160962
a
5
=
0.160962u
45
+ 0.375077u
44
+ ··· + 3.35122u 1.66115
0.413110u
45
+ 1.85280u
44
+ ··· 0.665590u + 1.80281
a
5
=
0.160962u
45
+ 0.375077u
44
+ ··· + 3.35122u 1.66115
0.413110u
45
+ 1.85280u
44
+ ··· 0.665590u + 1.80281
(ii) Obstruction class = 1
(iii) Cusp Shapes =
13372946836041823816
36719786468444867913
u
45
+
53663175405029739464
36719786468444867913
u
44
+ ··· +
374972108042035142776
36719786468444867913
u
316536124285645900534
36719786468444867913
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
23
+ u
22
+ ··· + 2u + 1)
2
c
2
(u
23
+ 11u
22
+ ··· 2u
2
1)
2
c
3
, c
4
, c
8
c
10
u
46
+ u
45
+ ··· + 4u + 1
c
6
(u
23
u
22
+ ··· 8u + 5)
2
c
7
, c
9
u
46
+ 25u
45
+ ··· + 4u + 1
c
11
(u
23
+ 5u
22
+ ··· + 32u + 7)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
23
+ 11y
22
+ ··· 2y
2
1)
2
c
2
(y
23
+ 3y
22
+ ··· 4y 1)
2
c
3
, c
4
, c
8
c
10
y
46
25y
45
+ ··· 4y + 1
c
6
(y
23
5y
22
+ ··· + 264y 25)
2
c
7
, c
9
y
46
9y
45
+ ··· 104y + 1
c
11
(y
23
+ 7y
22
+ ··· 404y 49)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.326451 + 0.907420I
a = 0.77255 + 1.54332I
b = 1.111200 0.111182I
0.14155 + 10.59580I 6.96908 7.47788I
u = 0.326451 0.907420I
a = 0.77255 1.54332I
b = 1.111200 + 0.111182I
0.14155 10.59580I 6.96908 + 7.47788I
u = 0.539847 + 0.797694I
a = 0.530178 + 0.740332I
b = 0.897400 + 0.896177I
2.35134 1.73636I 4.20687 + 2.46590I
u = 0.539847 0.797694I
a = 0.530178 0.740332I
b = 0.897400 0.896177I
2.35134 + 1.73636I 4.20687 2.46590I
u = 0.466971 + 0.825572I
a = 0.159069 0.983222I
b = 1.088190 0.614230I
3.49101 3.16234I 2.33540 + 3.46689I
u = 0.466971 0.825572I
a = 0.159069 + 0.983222I
b = 1.088190 + 0.614230I
3.49101 + 3.16234I 2.33540 3.46689I
u = 0.356156 + 0.878751I
a = 0.54445 1.35389I
b = 1.126660 0.091255I
2.34965 5.52406I 3.72778 + 3.52157I
u = 0.356156 0.878751I
a = 0.54445 + 1.35389I
b = 1.126660 + 0.091255I
2.34965 + 5.52406I 3.72778 3.52157I
u = 1.036260 + 0.200630I
a = 0.031632 + 0.423510I
b = 0.996138 + 0.538101I
4.31524 + 3.60580I 10.88555 4.48858I
u = 1.036260 0.200630I
a = 0.031632 0.423510I
b = 0.996138 0.538101I
4.31524 3.60580I 10.88555 + 4.48858I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.976746 + 0.435286I
a = 0.94989 2.08219I
b = 1.89184 1.72781I
3.06946 + 2.29224I 8.17333 3.81893I
u = 0.976746 0.435286I
a = 0.94989 + 2.08219I
b = 1.89184 + 1.72781I
3.06946 2.29224I 8.17333 + 3.81893I
u = 0.886233 + 0.678199I
a = 1.217710 0.695264I
b = 1.155150 + 0.542637I
2.35134 + 1.73636I 4.20687 2.46590I
u = 0.886233 0.678199I
a = 1.217710 + 0.695264I
b = 1.155150 0.542637I
2.35134 1.73636I 4.20687 + 2.46590I
u = 1.009630 + 0.482481I
a = 0.74786 + 2.38510I
b = 2.07366 + 2.28227I
5.29128 7.02777I 11.56401 + 7.34039I
u = 1.009630 0.482481I
a = 0.74786 2.38510I
b = 2.07366 2.28227I
5.29128 + 7.02777I 11.56401 7.34039I
u = 0.807547 + 0.331658I
a = 1.81318 1.49133I
b = 1.88066 0.51355I
2.27583 + 0.94673I 5.56367 4.33310I
u = 0.807547 0.331658I
a = 1.81318 + 1.49133I
b = 1.88066 + 0.51355I
2.27583 0.94673I 5.56367 + 4.33310I
u = 0.296950 + 0.801445I
a = 0.872198 + 0.800219I
b = 0.792177 + 0.162915I
2.33291 + 3.02476I 10.12213 2.21609I
u = 0.296950 0.801445I
a = 0.872198 0.800219I
b = 0.792177 0.162915I
2.33291 3.02476I 10.12213 + 2.21609I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.079890 + 0.398169I
a = 0.33037 + 1.80790I
b = 0.88071 + 2.08789I
7.03235 + 0.30335I 15.4115 + 0.4048I
u = 1.079890 0.398169I
a = 0.33037 1.80790I
b = 0.88071 2.08789I
7.03235 0.30335I 15.4115 0.4048I
u = 0.952704 + 0.656540I
a = 1.13459 + 0.99283I
b = 1.52639 + 0.00115I
3.49101 + 3.16234I 2.33540 3.46689I
u = 0.952704 0.656540I
a = 1.13459 0.99283I
b = 1.52639 0.00115I
3.49101 3.16234I 2.33540 + 3.46689I
u = 1.050590 + 0.549581I
a = 0.568130 1.260550I
b = 1.01651 1.37602I
2.33291 3.02476I 10.12213 + 2.21609I
u = 1.050590 0.549581I
a = 0.568130 + 1.260550I
b = 1.01651 + 1.37602I
2.33291 + 3.02476I 10.12213 2.21609I
u = 1.213100 + 0.082369I
a = 0.285118 + 0.176496I
b = 0.551742 0.474744I
2.27583 + 0.94673I 5.56367 4.33310I
u = 1.213100 0.082369I
a = 0.285118 0.176496I
b = 0.551742 + 0.474744I
2.27583 0.94673I 5.56367 + 4.33310I
u = 1.219100 + 0.005734I
a = 0.379506 + 0.077327I
b = 1.217710 0.486619I
3.90982 3.26242I 8.80376 + 2.26815I
u = 1.219100 0.005734I
a = 0.379506 0.077327I
b = 1.217710 + 0.486619I
3.90982 + 3.26242I 8.80376 2.26815I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.054910 + 0.629750I
a = 0.89707 + 1.44259I
b = 1.92867 + 1.14714I
2.34965 + 5.52406I 3.72778 3.52157I
u = 1.054910 0.629750I
a = 0.89707 1.44259I
b = 1.92867 1.14714I
2.34965 5.52406I 3.72778 + 3.52157I
u = 1.223310 + 0.272825I
a = 0.227490 0.807258I
b = 0.791557 0.749493I
7.03235 + 0.30335I 15.4115 + 0.I
u = 1.223310 0.272825I
a = 0.227490 + 0.807258I
b = 0.791557 + 0.749493I
7.03235 0.30335I 15.4115 + 0.I
u = 1.089410 + 0.631074I
a = 0.82929 1.61402I
b = 2.12255 1.58531I
0.14155 10.59580I 7.00000 + 7.47788I
u = 1.089410 0.631074I
a = 0.82929 + 1.61402I
b = 2.12255 + 1.58531I
0.14155 + 10.59580I 7.00000 7.47788I
u = 1.260980 + 0.195080I
a = 0.136063 + 0.360918I
b = 0.638559 0.316478I
3.06946 + 2.29224I 7.00000 3.81893I
u = 1.260980 0.195080I
a = 0.136063 0.360918I
b = 0.638559 + 0.316478I
3.06946 2.29224I 7.00000 + 3.81893I
u = 1.294740 + 0.221264I
a = 0.355915 0.330975I
b = 1.227850 + 0.392277I
5.29128 7.02777I 11.56401 + 7.34039I
u = 1.294740 0.221264I
a = 0.355915 + 0.330975I
b = 1.227850 0.392277I
5.29128 + 7.02777I 11.56401 7.34039I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.594081 + 0.341794I
a = 2.68688 + 1.47263I
b = 1.88722 0.13661I
3.90982 + 3.26242I 8.80376 2.26815I
u = 0.594081 0.341794I
a = 2.68688 1.47263I
b = 1.88722 + 0.13661I
3.90982 3.26242I 8.80376 + 2.26815I
u = 0.663527
a = 0.600867
b = 0.631190
1.33670 6.47390
u = 0.486649
a = 1.02746
b = 0.652402
1.33670 6.47390
u = 0.033796 + 0.382833I
a = 1.45604 + 2.22878I
b = 0.870135 0.373642I
4.31524 3.60580I 10.88555 + 4.48858I
u = 0.033796 0.382833I
a = 1.45604 2.22878I
b = 0.870135 + 0.373642I
4.31524 + 3.60580I 10.88555 4.48858I
16
III. I
u
3
= hb
4
+ 4b
3
+ 4b
2
+ 1, a + 1, u + 1i
(i) Arc colorings
a
4
=
0
1
a
10
=
1
0
a
7
=
1
b
a
11
=
1
1
a
1
=
b
b
2
+ b + 1
a
3
=
1
1
a
2
=
b
3
2b
2
b 1
b
3
+ 3b 1
a
6
=
b
2b + 1
a
9
=
0
1
a
8
=
1
b 1
a
5
=
1
b
a
5
=
1
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
+ 8b 16
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
4
+ 2u
2
+ 2
c
2
(u
2
+ 2u + 2)
2
c
3
, c
7
, c
8
c
9
(u 1)
4
c
4
, c
10
(u + 1)
4
c
6
, c
11
u
4
2u
2
+ 2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
+ 2y + 2)
2
c
2
(y
2
+ 4)
2
c
3
, c
4
, c
7
c
8
, c
9
, c
10
(y 1)
4
c
6
, c
11
(y
2
2y + 2)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.098684 + 0.455090I
5.75727 3.66386I 16.0000 + 4.0000I
u = 1.00000
a = 1.00000
b = 0.098684 0.455090I
5.75727 + 3.66386I 16.0000 4.0000I
u = 1.00000
a = 1.00000
b = 2.09868 + 0.45509I
5.75727 + 3.66386I 16.0000 4.0000I
u = 1.00000
a = 1.00000
b = 2.09868 0.45509I
5.75727 3.66386I 16.0000 + 4.0000I
20
IV. I
u
4
= hb
3
+ 3b
2
+ 3b + 1, a + 1, u 1i
(i) Arc colorings
a
4
=
0
1
a
10
=
1
0
a
7
=
1
b
a
11
=
1
1
a
1
=
b
b
2
+ b + 1
a
3
=
1
1
a
2
=
b
2
2b
b
2
2b
a
6
=
b
2b + 1
a
9
=
0
1
a
8
=
1
b 1
a
5
=
1
b
a
5
=
1
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
+ 8b 8
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
u
3
c
3
, c
8
(u + 1)
3
c
4
, c
7
, c
9
c
10
(u 1)
3
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
y
3
c
3
, c
4
, c
7
c
8
, c
9
, c
10
(y 1)
3
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
3
(u
4
+ 2u
2
+ 2)(u
23
+ u
22
+ ··· + 2u + 1)
2
(u
31
3u
30
+ ··· 6u + 2)
c
2
u
3
(u
2
+ 2u + 2)
2
(u
23
+ 11u
22
+ ··· 2u
2
1)
2
· (u
31
+ 15u
30
+ ··· 4u 4)
c
3
, c
8
((u 1)
4
)(u + 1)
3
(u
31
+ u
30
+ ··· + 2u + 1)(u
46
+ u
45
+ ··· + 4u + 1)
c
4
, c
10
((u 1)
3
)(u + 1)
4
(u
31
+ u
30
+ ··· + 2u + 1)(u
46
+ u
45
+ ··· + 4u + 1)
c
6
u
3
(u
4
2u
2
+ 2)(u
23
u
22
+ ··· 8u + 5)
2
(u
31
+ 3u
30
+ ··· + 34u + 2)
c
7
, c
9
((u 1)
7
)(u
31
+ 13u
30
+ ··· + 8u + 1)(u
46
+ 25u
45
+ ··· + 4u + 1)
c
11
u
3
(u
4
2u
2
+ 2)(u
23
+ 5u
22
+ ··· + 32u + 7)
2
· (u
31
15u
30
+ ··· 1566u + 158)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
(y
2
+ 2y + 2)
2
(y
23
+ 11y
22
+ ··· 2y
2
1)
2
· (y
31
+ 15y
30
+ ··· 4y 4)
c
2
y
3
(y
2
+ 4)
2
(y
23
+ 3y
22
+ ··· 4y 1)
2
(y
31
+ 3y
30
+ ··· + 112y 16)
c
3
, c
4
, c
8
c
10
((y 1)
7
)(y
31
13y
30
+ ··· + 8y 1)(y
46
25y
45
+ ··· 4y + 1)
c
6
y
3
(y
2
2y + 2)
2
(y
23
5y
22
+ ··· + 264y 25)
2
· (y
31
9y
30
+ ··· + 92y 4)
c
7
, c
9
((y 1)
7
)(y
31
+ 19y
30
+ ··· 4y 1)(y
46
9y
45
+ ··· 104y + 1)
c
11
y
3
(y
2
2y + 2)
2
(y
23
+ 7y
22
+ ··· 404y 49)
2
· (y
31
+ 3y
30
+ ··· 219108y 24964)
26