11a
101
(K11a
101
)
A knot diagram
1
Linearized knot diagam
5 1 9 10 2 4 3 11 7 6 8
Solving Sequence
1,5
2 3
6,8
7 11 9 10 4
c
1
c
2
c
5
c
7
c
11
c
8
c
10
c
4
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.86190 × 10
189
u
104
+ 3.24426 × 10
190
u
103
+ ··· + 1.28496 × 10
191
b + 2.04597 × 10
191
,
9.93421 × 10
190
u
104
1.87948 × 10
191
u
103
+ ··· + 5.39685 × 10
192
a 1.98703 × 10
193
,
u
105
3u
104
+ ··· + 26u 21i
I
u
2
= h−u
17
4u
16
+ ··· + b 4, 10u
17
12u
16
+ ··· + a 10, u
18
+ 2u
17
+ ··· + 2u + 1i
I
u
3
= h−a
2
+ b a, a
4
+ 2a
3
+ 2a
2
+ a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 127 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.86 × 10
189
u
104
+ 3.24 × 10
190
u
103
+ · · · + 1.28 × 10
191
b + 2.05 ×
10
191
, 9.93 × 10
190
u
104
1.88 × 10
191
u
103
+ · · · + 5.40 × 10
192
a 1.99 ×
10
193
, u
105
3u
104
+ · · · + 26u 21i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
0.0184074u
104
+ 0.0348256u
103
+ ··· 3.82299u + 3.68184
0.0456192u
104
0.252478u
103
+ ··· + 11.7933u 1.59224
a
7
=
0.0754639u
104
0.151948u
103
+ ··· + 4.47496u + 3.26401
0.0217419u
104
0.195594u
103
+ ··· + 13.2792u 2.22961
a
11
=
0.106302u
104
0.0726312u
103
+ ··· 18.1193u + 6.55450
0.0367543u
104
0.0382608u
103
+ ··· + 0.133832u + 0.505694
a
9
=
0.0375876u
104
+ 0.0739669u
103
+ ··· + 2.09040u + 2.16319
0.123383u
104
+ 0.240256u
103
+ ··· 8.75520u + 3.25940
a
10
=
0.00776219u
104
+ 0.0887609u
103
+ ··· 15.0253u + 5.17372
0.0721333u
104
+ 0.148940u
103
+ ··· 1.53959u 0.932304
a
4
=
0.0513625u
104
+ 0.118285u
103
+ ··· + 16.1435u 2.45451
0.00759574u
104
+ 0.0691986u
103
+ ··· 13.0165u + 3.52395
a
4
=
0.0513625u
104
+ 0.118285u
103
+ ··· + 16.1435u 2.45451
0.00759574u
104
+ 0.0691986u
103
+ ··· 13.0165u + 3.52395
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.671537u
104
+ 1.42948u
103
+ ··· + 1.71034u 0.382946
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
105
+ 3u
104
+ ··· + 26u + 21
c
2
u
105
+ 41u
104
+ ··· + 9538u + 441
c
3
u
105
u
102
+ ··· 35u + 1
c
4
u
105
+ 2u
104
+ ··· 373u + 41
c
6
u
105
+ 9u
104
+ ··· + 47u + 5
c
7
u
105
+ 3u
104
+ ··· 2530373u + 478501
c
8
, c
11
u
105
+ 5u
104
+ ··· + 914u + 55
c
9
u
105
9u
104
+ ··· 328u + 48
c
10
u
105
3u
104
+ ··· + 546u + 59
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
105
41y
104
+ ··· + 9538y 441
c
2
y
105
+ 51y
104
+ ··· 9048002y 194481
c
3
y
105
+ 84y
103
+ ··· + 273y 1
c
4
y
105
12y
104
+ ··· + 97145y 1681
c
6
y
105
+ 5y
104
+ ··· 251y 25
c
7
y
105
+ 29y
104
+ ··· 5403864823119y 228963207001
c
8
, c
11
y
105
+ 65y
104
+ ··· + 142616y 3025
c
9
y
105
+ 5y
104
+ ··· 54464y 2304
c
10
y
105
17y
104
+ ··· + 56806y 3481
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.739994 + 0.674362I
a = 0.00363 1.98612I
b = 0.319451 + 1.371430I
6.01729 + 2.93762I 0
u = 0.739994 0.674362I
a = 0.00363 + 1.98612I
b = 0.319451 1.371430I
6.01729 2.93762I 0
u = 0.996356 + 0.112850I
a = 0.754266 0.000581I
b = 0.663792 + 1.031300I
2.38432 + 4.04449I 0
u = 0.996356 0.112850I
a = 0.754266 + 0.000581I
b = 0.663792 1.031300I
2.38432 4.04449I 0
u = 0.704644 + 0.717723I
a = 0.45849 + 1.34634I
b = 0.315659 0.133734I
1.23630 4.64058I 0
u = 0.704644 0.717723I
a = 0.45849 1.34634I
b = 0.315659 + 0.133734I
1.23630 + 4.64058I 0
u = 0.621034 + 0.773307I
a = 0.410716 0.805404I
b = 1.131970 0.010819I
1.74977 + 6.39892I 0
u = 0.621034 0.773307I
a = 0.410716 + 0.805404I
b = 1.131970 + 0.010819I
1.74977 6.39892I 0
u = 0.955004 + 0.332452I
a = 0.334732 + 1.334190I
b = 0.943520 0.498433I
3.24061 2.39399I 0
u = 0.955004 0.332452I
a = 0.334732 1.334190I
b = 0.943520 + 0.498433I
3.24061 + 2.39399I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.639186 + 0.731369I
a = 0.049200 + 0.306897I
b = 0.691929 + 0.143673I
3.14263 + 0.23766I 0
u = 0.639186 0.731369I
a = 0.049200 0.306897I
b = 0.691929 0.143673I
3.14263 0.23766I 0
u = 0.873349 + 0.559236I
a = 0.241965 1.018150I
b = 1.50507 0.13441I
2.19508 + 2.22433I 0
u = 0.873349 0.559236I
a = 0.241965 + 1.018150I
b = 1.50507 + 0.13441I
2.19508 2.22433I 0
u = 0.712742 + 0.615251I
a = 1.35301 3.08293I
b = 0.045643 + 0.959720I
1.43043 3.49947I 0
u = 0.712742 0.615251I
a = 1.35301 + 3.08293I
b = 0.045643 0.959720I
1.43043 + 3.49947I 0
u = 0.702742 + 0.794345I
a = 0.77380 1.75107I
b = 0.47650 + 1.40660I
3.70990 + 3.71060I 0
u = 0.702742 0.794345I
a = 0.77380 + 1.75107I
b = 0.47650 1.40660I
3.70990 3.71060I 0
u = 0.717574 + 0.787844I
a = 0.24779 1.49492I
b = 0.008686 + 1.151720I
5.29707 + 2.41276I 0
u = 0.717574 0.787844I
a = 0.24779 + 1.49492I
b = 0.008686 1.151720I
5.29707 2.41276I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.034220 + 0.263826I
a = 0.376217 + 0.538683I
b = 0.248610 + 0.058839I
2.22921 0.56313I 0
u = 1.034220 0.263826I
a = 0.376217 0.538683I
b = 0.248610 0.058839I
2.22921 + 0.56313I 0
u = 0.746082 + 0.554107I
a = 0.106561 0.269895I
b = 0.791032 0.852363I
0.515363 0.751368I 0
u = 0.746082 0.554107I
a = 0.106561 + 0.269895I
b = 0.791032 + 0.852363I
0.515363 + 0.751368I 0
u = 0.872372 + 0.624977I
a = 0.647622 + 1.115110I
b = 1.43569 + 0.11086I
1.77580 2.44321I 0
u = 0.872372 0.624977I
a = 0.647622 1.115110I
b = 1.43569 0.11086I
1.77580 + 2.44321I 0
u = 1.062710 + 0.196859I
a = 1.223850 + 0.353605I
b = 0.466155 0.892338I
2.09066 + 2.59250I 0
u = 1.062710 0.196859I
a = 1.223850 0.353605I
b = 0.466155 + 0.892338I
2.09066 2.59250I 0
u = 0.904124 + 0.143933I
a = 1.137730 0.581704I
b = 0.997296 + 0.489711I
4.17184 + 1.85108I 0
u = 0.904124 0.143933I
a = 1.137730 + 0.581704I
b = 0.997296 0.489711I
4.17184 1.85108I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.739990 + 0.531797I
a = 0.61736 + 2.52001I
b = 0.320667 1.080820I
0.43413 3.31458I 0
u = 0.739990 0.531797I
a = 0.61736 2.52001I
b = 0.320667 + 1.080820I
0.43413 + 3.31458I 0
u = 0.842087 + 0.691910I
a = 0.77060 + 1.47914I
b = 0.32251 1.60831I
6.64218 5.69412I 0
u = 0.842087 0.691910I
a = 0.77060 1.47914I
b = 0.32251 + 1.60831I
6.64218 + 5.69412I 0
u = 1.091690 + 0.038289I
a = 0.778221 0.609668I
b = 0.793651 + 0.444672I
4.05808 + 5.63577I 0
u = 1.091690 0.038289I
a = 0.778221 + 0.609668I
b = 0.793651 0.444672I
4.05808 5.63577I 0
u = 0.871499 + 0.695856I
a = 1.42749 1.69493I
b = 0.45738 + 1.46954I
6.55301 + 0.36358I 0
u = 0.871499 0.695856I
a = 1.42749 + 1.69493I
b = 0.45738 1.46954I
6.55301 0.36358I 0
u = 0.867026 + 0.127583I
a = 0.40021 1.59881I
b = 0.077948 1.079960I
2.21304 3.42010I 0
u = 0.867026 0.127583I
a = 0.40021 + 1.59881I
b = 0.077948 + 1.079960I
2.21304 + 3.42010I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.523544 + 0.702765I
a = 0.69115 + 1.53730I
b = 0.45129 1.46814I
3.78630 4.41777I 0
u = 0.523544 0.702765I
a = 0.69115 1.53730I
b = 0.45129 + 1.46814I
3.78630 + 4.41777I 0
u = 0.968752 + 0.584437I
a = 0.700178 0.530675I
b = 0.885614 + 0.568414I
0.24099 + 5.32174I 0
u = 0.968752 0.584437I
a = 0.700178 + 0.530675I
b = 0.885614 0.568414I
0.24099 5.32174I 0
u = 0.556771 + 1.007560I
a = 0.07814 1.44514I
b = 0.371110 + 1.241100I
7.20552 3.60295I 0
u = 0.556771 1.007560I
a = 0.07814 + 1.44514I
b = 0.371110 1.241100I
7.20552 + 3.60295I 0
u = 0.953631 + 0.649911I
a = 2.07755 + 1.58789I
b = 0.390960 1.281680I
5.35487 8.08102I 0
u = 0.953631 0.649911I
a = 2.07755 1.58789I
b = 0.390960 + 1.281680I
5.35487 + 8.08102I 0
u = 0.936806 + 0.674442I
a = 0.411966 0.245905I
b = 0.703893 + 0.390935I
0.603292 0.732253I 0
u = 0.936806 0.674442I
a = 0.411966 + 0.245905I
b = 0.703893 0.390935I
0.603292 + 0.732253I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.607933 + 0.981916I
a = 0.37768 + 1.50010I
b = 0.53317 1.35907I
6.05536 + 12.20240I 0
u = 0.607933 0.981916I
a = 0.37768 1.50010I
b = 0.53317 + 1.35907I
6.05536 12.20240I 0
u = 0.975859 + 0.621747I
a = 1.13351 + 2.50633I
b = 0.197170 1.088220I
0.59498 + 8.39732I 0
u = 0.975859 0.621747I
a = 1.13351 2.50633I
b = 0.197170 + 1.088220I
0.59498 8.39732I 0
u = 0.843437 + 0.793529I
a = 0.409882 0.975452I
b = 0.519206 + 1.191500I
5.49450 + 0.84862I 0
u = 0.843437 0.793529I
a = 0.409882 + 0.975452I
b = 0.519206 1.191500I
5.49450 0.84862I 0
u = 0.592273 + 1.001820I
a = 0.40109 + 1.55763I
b = 0.179100 1.346320I
7.47132 2.85952I 0
u = 0.592273 1.001820I
a = 0.40109 1.55763I
b = 0.179100 + 1.346320I
7.47132 + 2.85952I 0
u = 1.166930 + 0.102460I
a = 0.244286 + 0.337232I
b = 0.456043 + 1.078420I
1.36269 + 2.57650I 0
u = 1.166930 0.102460I
a = 0.244286 0.337232I
b = 0.456043 1.078420I
1.36269 2.57650I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.023120 + 0.572530I
a = 1.05565 1.39581I
b = 0.087494 + 0.954698I
0.509462 1.065740I 0
u = 1.023120 0.572530I
a = 1.05565 + 1.39581I
b = 0.087494 0.954698I
0.509462 + 1.065740I 0
u = 1.142920 + 0.284510I
a = 1.045750 + 0.233066I
b = 0.329260 + 0.724314I
2.64401 1.00097I 0
u = 1.142920 0.284510I
a = 1.045750 0.233066I
b = 0.329260 0.724314I
2.64401 + 1.00097I 0
u = 0.887449 + 0.774416I
a = 1.00120 + 1.53589I
b = 0.661868 1.121830I
5.35733 + 5.02068I 0
u = 0.887449 0.774416I
a = 1.00120 1.53589I
b = 0.661868 + 1.121830I
5.35733 5.02068I 0
u = 1.015240 + 0.661398I
a = 0.201760 + 0.488347I
b = 0.809497 + 0.102022I
2.01213 + 5.10232I 0
u = 1.015240 0.661398I
a = 0.201760 0.488347I
b = 0.809497 0.102022I
2.01213 5.10232I 0
u = 1.101410 + 0.522783I
a = 0.303133 + 0.595211I
b = 0.184844 + 0.573566I
1.08423 + 6.56298I 0
u = 1.101410 0.522783I
a = 0.303133 0.595211I
b = 0.184844 0.573566I
1.08423 6.56298I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.982163 + 0.730546I
a = 1.50146 + 1.08061I
b = 0.100432 1.001600I
4.50787 + 3.31342I 0
u = 0.982163 0.730546I
a = 1.50146 1.08061I
b = 0.100432 + 1.001600I
4.50787 3.31342I 0
u = 1.000300 + 0.716440I
a = 1.20544 + 1.95779I
b = 0.60105 1.43750I
2.80470 9.41027I 0
u = 1.000300 0.716440I
a = 1.20544 1.95779I
b = 0.60105 + 1.43750I
2.80470 + 9.41027I 0
u = 1.048930 + 0.643496I
a = 1.30143 1.45853I
b = 0.65511 + 1.45873I
2.28544 + 9.63826I 0
u = 1.048930 0.643496I
a = 1.30143 + 1.45853I
b = 0.65511 1.45873I
2.28544 9.63826I 0
u = 0.237807 + 1.211570I
a = 0.019047 1.255930I
b = 0.186131 + 1.098200I
3.78005 5.81600I 0
u = 0.237807 1.211570I
a = 0.019047 + 1.255930I
b = 0.186131 1.098200I
3.78005 + 5.81600I 0
u = 1.029710 + 0.682335I
a = 0.204403 0.720463I
b = 1.264740 0.144159I
0.52957 11.92170I 0
u = 1.029710 0.682335I
a = 0.204403 + 0.720463I
b = 1.264740 + 0.144159I
0.52957 + 11.92170I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.828894 + 0.953806I
a = 0.38958 + 1.50653I
b = 0.267682 0.788116I
1.42823 4.82513I 0
u = 0.828894 0.953806I
a = 0.38958 1.50653I
b = 0.267682 + 0.788116I
1.42823 + 4.82513I 0
u = 0.247645 + 0.673285I
a = 0.329154 + 0.092322I
b = 0.232356 0.603903I
1.31308 2.02353I 1.45876 0.03065I
u = 0.247645 0.673285I
a = 0.329154 0.092322I
b = 0.232356 + 0.603903I
1.31308 + 2.02353I 1.45876 + 0.03065I
u = 0.709328
a = 1.19069
b = 0.164470
1.21866 8.07920
u = 1.277390 + 0.256564I
a = 0.752259 0.588703I
b = 0.234618 + 0.830546I
0.99712 1.17089I 0
u = 1.277390 0.256564I
a = 0.752259 + 0.588703I
b = 0.234618 0.830546I
0.99712 + 1.17089I 0
u = 1.311490 + 0.202186I
a = 0.579840 + 0.214833I
b = 0.474299 1.083500I
2.04022 + 10.35480I 0
u = 1.311490 0.202186I
a = 0.579840 0.214833I
b = 0.474299 + 1.083500I
2.04022 10.35480I 0
u = 1.112650 + 0.751251I
a = 1.20328 1.58693I
b = 0.62681 + 1.37577I
4.4701 18.5210I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.112650 0.751251I
a = 1.20328 + 1.58693I
b = 0.62681 1.37577I
4.4701 + 18.5210I 0
u = 1.117760 + 0.756995I
a = 1.00207 1.37454I
b = 0.32630 + 1.39265I
5.83122 + 9.23477I 0
u = 1.117760 0.756995I
a = 1.00207 + 1.37454I
b = 0.32630 1.39265I
5.83122 9.23477I 0
u = 1.136440 + 0.740786I
a = 1.25852 + 1.35712I
b = 0.497698 1.232560I
5.39646 + 9.93649I 0
u = 1.136440 0.740786I
a = 1.25852 1.35712I
b = 0.497698 + 1.232560I
5.39646 9.93649I 0
u = 0.039444 + 0.557659I
a = 0.991976 + 0.968484I
b = 0.205599 0.907238I
0.90741 2.03803I 2.19325 + 4.21221I
u = 0.039444 0.557659I
a = 0.991976 0.968484I
b = 0.205599 + 0.907238I
0.90741 + 2.03803I 2.19325 4.21221I
u = 1.42240 + 0.27773I
a = 0.142074 + 0.305204I
b = 0.020374 0.935500I
1.052790 0.389667I 0
u = 1.42240 0.27773I
a = 0.142074 0.305204I
b = 0.020374 + 0.935500I
1.052790 + 0.389667I 0
u = 0.266843 + 0.324688I
a = 2.45970 + 2.39117I
b = 0.412521 + 0.477500I
0.56603 4.69971I 5.71567 + 9.51983I
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.266843 0.324688I
a = 2.45970 2.39117I
b = 0.412521 0.477500I
0.56603 + 4.69971I 5.71567 9.51983I
u = 0.394234 + 0.067762I
a = 1.30258 + 1.27803I
b = 0.16126 1.43661I
3.75692 3.86041I 9.69028 + 2.00461I
u = 0.394234 0.067762I
a = 1.30258 1.27803I
b = 0.16126 + 1.43661I
3.75692 + 3.86041I 9.69028 2.00461I
u = 0.203779 + 0.335462I
a = 1.65509 + 0.07138I
b = 0.659402 0.044946I
1.40825 0.47122I 8.26224 + 1.56845I
u = 0.203779 0.335462I
a = 1.65509 0.07138I
b = 0.659402 + 0.044946I
1.40825 + 0.47122I 8.26224 1.56845I
15
II. I
u
2
=
h−u
17
4u
16
+· · ·+b4, 10u
17
12u
16
+· · ·+a10, u
18
+2u
17
+· · ·+2u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
10u
17
+ 12u
16
+ ··· + 12u + 10
u
17
+ 4u
16
+ ··· + 2u + 4
a
7
=
9u
17
+ 10u
16
+ ··· + 11u + 7
2u
17
+ 5u
16
+ ··· + 4u + 5
a
11
=
u
17
u
16
+ ··· 4u + 1
u
17
+ 2u
16
+ ··· + u + 2
a
9
=
11u
17
+ 11u
16
+ ··· + 14u + 8
5u
16
+ 2u
15
+ ··· + 2u + 4
a
10
=
2u
17
+ 3u
16
+ ··· + u + 4
3u
17
u
16
+ ··· 3u + 1
a
4
=
4u
16
+ u
15
+ ··· + u + 5
7u
17
9u
16
+ ··· 10u 7
a
4
=
4u
16
+ u
15
+ ··· + u + 5
7u
17
9u
16
+ ··· 10u 7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25u
17
+ 12u
16
84u
15
72u
14
+ 146u
13
+ 101u
12
185u
11
83u
10
+ 275u
9
+ 112u
8
197u
7
92u
6
+ 121u
5
+ 29u
4
39u
3
+ 7u
2
+ 33u 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 2u
17
+ ··· + 2u + 1
c
2
u
18
+ 8u
17
+ ··· + 4u + 1
c
3
u
18
+ 2u
16
+ ··· + 4u
2
+ 1
c
4
u
18
+ 4u
16
+ ··· + 2u
2
+ 1
c
5
u
18
2u
17
+ ··· 2u + 1
c
6
u
18
u
16
+ ··· + 3u
2
+ 1
c
7
u
18
3u
16
+ ··· + 8u + 1
c
8
u
18
6u
17
+ ··· 2u + 1
c
9
u
18
+ 4u
17
+ ··· + 47u + 13
c
10
u
18
+ 2u
17
+ ··· + 2u + 1
c
11
u
18
+ 6u
17
+ ··· + 2u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
18
8y
17
+ ··· 4y + 1
c
2
y
18
+ 4y
17
+ ··· + 16y + 1
c
3
y
18
+ 4y
17
+ ··· + 8y + 1
c
4
y
18
+ 8y
17
+ ··· + 4y + 1
c
6
y
18
2y
17
+ ··· + 6y + 1
c
7
y
18
6y
17
+ ··· 26y + 1
c
8
, c
11
y
18
+ 8y
17
+ ··· + 16y + 1
c
9
y
18
10y
17
+ ··· + 287y + 169
c
10
y
18
14y
17
+ ··· + 10y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866037 + 0.622834I
a = 0.511124 1.090210I
b = 1.48733 0.08783I
1.41709 + 2.44188I 5.08235 4.37378I
u = 0.866037 0.622834I
a = 0.511124 + 1.090210I
b = 1.48733 + 0.08783I
1.41709 2.44188I 5.08235 + 4.37378I
u = 0.621434 + 0.693802I
a = 0.42128 + 2.04009I
b = 0.27976 1.42569I
4.97290 3.51801I 0.06010 + 3.45707I
u = 0.621434 0.693802I
a = 0.42128 2.04009I
b = 0.27976 + 1.42569I
4.97290 + 3.51801I 0.06010 3.45707I
u = 0.867195 + 0.330617I
a = 0.196161 + 1.071470I
b = 1.035840 0.187211I
3.15340 1.42820I 13.04256 1.16995I
u = 0.867195 0.330617I
a = 0.196161 1.071470I
b = 1.035840 + 0.187211I
3.15340 + 1.42820I 13.04256 + 1.16995I
u = 0.631710 + 0.902435I
a = 0.34312 2.01414I
b = 0.157524 + 0.820252I
2.00612 4.90356I 3.85332 + 8.49862I
u = 0.631710 0.902435I
a = 0.34312 + 2.01414I
b = 0.157524 0.820252I
2.00612 + 4.90356I 3.85332 8.49862I
u = 1.058500 + 0.470398I
a = 0.325723 0.619881I
b = 0.095630 0.511385I
1.16935 + 7.23800I 7.01755 11.25029I
u = 1.058500 0.470398I
a = 0.325723 + 0.619881I
b = 0.095630 + 0.511385I
1.16935 7.23800I 7.01755 + 11.25029I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.034500 + 0.678208I
a = 1.39724 1.64751I
b = 0.45509 + 1.38511I
3.72776 + 8.87878I 1.84390 7.64771I
u = 1.034500 0.678208I
a = 1.39724 + 1.64751I
b = 0.45509 1.38511I
3.72776 8.87878I 1.84390 + 7.64771I
u = 0.663344 + 0.366591I
a = 0.57381 + 2.59156I
b = 0.234163 + 0.558499I
0.33317 3.63726I 8.91882 + 3.24390I
u = 0.663344 0.366591I
a = 0.57381 2.59156I
b = 0.234163 0.558499I
0.33317 + 3.63726I 8.91882 3.24390I
u = 0.361361 + 0.532422I
a = 0.447856 + 0.920402I
b = 0.050374 1.315620I
4.34573 4.19547I 2.04350 + 7.15132I
u = 0.361361 0.532422I
a = 0.447856 0.920402I
b = 0.050374 + 1.315620I
4.34573 + 4.19547I 2.04350 7.15132I
u = 1.383550 + 0.265753I
a = 0.482355 + 0.445640I
b = 0.178928 0.850199I
1.42117 1.04333I 13.21645 + 1.56037I
u = 1.383550 0.265753I
a = 0.482355 0.445640I
b = 0.178928 + 0.850199I
1.42117 + 1.04333I 13.21645 1.56037I
20
III. I
u
3
= h−a
2
+ b a, a
4
+ 2a
3
+ 2a
2
+ a + 1, u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
3
=
0
1
a
6
=
1
0
a
8
=
a
a
2
+ a
a
7
=
a
a
2
a
11
=
a
3
a
2
+ 1
a
2
+ a + 1
a
9
=
a
3
2a
2
a
a
2
+ a + 1
a
10
=
a
3
2a
2
a
a
2
+ a + 1
a
4
=
a
3
+ 2a
2
+ 2a
a
a
4
=
a
3
+ 2a
2
+ 2a
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3a
3
+ 2a
2
a 9
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
5
(u + 1)
4
c
3
, c
4
u
4
+ u
3
u
2
u + 1
c
6
, c
7
u
4
+ 2u
3
+ 2u
2
+ u + 1
c
8
, c
10
(u
2
u + 1)
2
c
9
u
4
c
11
(u
2
+ u + 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
y
4
3y
3
+ 5y
2
3y + 1
c
6
, c
7
y
4
+ 2y
2
+ 3y + 1
c
8
, c
10
, c
11
(y
2
+ y + 1)
2
c
9
y
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.070696 + 0.758745I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 10.57732 1.82047I
u = 1.00000
a = 0.070696 0.758745I
b = 0.500000 0.866025I
1.64493 2.02988I 10.57732 + 1.82047I
u = 1.00000
a = 1.070700 + 0.758745I
b = 0.500000 0.866025I
1.64493 2.02988I 4.92268 + 2.50966I
u = 1.00000
a = 1.070700 0.758745I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 4.92268 2.50966I
24
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
18
+ 2u
17
+ ··· + 2u + 1)(u
105
+ 3u
104
+ ··· + 26u + 21)
c
2
((u + 1)
4
)(u
18
+ 8u
17
+ ··· + 4u + 1)(u
105
+ 41u
104
+ ··· + 9538u + 441)
c
3
(u
4
+ u
3
u
2
u + 1)(u
18
+ 2u
16
+ ··· + 4u
2
+ 1)
· (u
105
u
102
+ ··· 35u + 1)
c
4
(u
4
+ u
3
u
2
u + 1)(u
18
+ 4u
16
+ ··· + 2u
2
+ 1)
· (u
105
+ 2u
104
+ ··· 373u + 41)
c
5
((u + 1)
4
)(u
18
2u
17
+ ··· 2u + 1)(u
105
+ 3u
104
+ ··· + 26u + 21)
c
6
(u
4
+ 2u
3
+ 2u
2
+ u + 1)(u
18
u
16
+ ··· + 3u
2
+ 1)
· (u
105
+ 9u
104
+ ··· + 47u + 5)
c
7
(u
4
+ 2u
3
+ 2u
2
+ u + 1)(u
18
3u
16
+ ··· + 8u + 1)
· (u
105
+ 3u
104
+ ··· 2530373u + 478501)
c
8
((u
2
u + 1)
2
)(u
18
6u
17
+ ··· 2u + 1)(u
105
+ 5u
104
+ ··· + 914u + 55)
c
9
u
4
(u
18
+ 4u
17
+ ··· + 47u + 13)(u
105
9u
104
+ ··· 328u + 48)
c
10
((u
2
u + 1)
2
)(u
18
+ 2u
17
+ ··· + 2u + 1)(u
105
3u
104
+ ··· + 546u + 59)
c
11
((u
2
+ u + 1)
2
)(u
18
+ 6u
17
+ ··· + 2u + 1)(u
105
+ 5u
104
+ ··· + 914u + 55)
25
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
4
)(y
18
8y
17
+ ··· 4y + 1)(y
105
41y
104
+ ··· + 9538y 441)
c
2
((y 1)
4
)(y
18
+ 4y
17
+ ··· + 16y + 1)
· (y
105
+ 51y
104
+ ··· 9048002y 194481)
c
3
(y
4
3y
3
+ 5y
2
3y + 1)(y
18
+ 4y
17
+ ··· + 8y + 1)
· (y
105
+ 84y
103
+ ··· + 273y 1)
c
4
(y
4
3y
3
+ 5y
2
3y + 1)(y
18
+ 8y
17
+ ··· + 4y + 1)
· (y
105
12y
104
+ ··· + 97145y 1681)
c
6
(y
4
+ 2y
2
+ 3y + 1)(y
18
2y
17
+ ··· + 6y + 1)
· (y
105
+ 5y
104
+ ··· 251y 25)
c
7
(y
4
+ 2y
2
+ 3y + 1)(y
18
6y
17
+ ··· 26y + 1)
· (y
105
+ 29y
104
+ ··· 5403864823119y 228963207001)
c
8
, c
11
((y
2
+ y + 1)
2
)(y
18
+ 8y
17
+ ··· + 16y + 1)
· (y
105
+ 65y
104
+ ··· + 142616y 3025)
c
9
y
4
(y
18
10y
17
+ ··· + 287y + 169)
· (y
105
+ 5y
104
+ ··· 54464y 2304)
c
10
((y
2
+ y + 1)
2
)(y
18
14y
17
+ ··· + 10y + 1)
· (y
105
17y
104
+ ··· + 56806y 3481)
26