11a
104
(K11a
104
)
A knot diagram
1
Linearized knot diagam
6 1 8 10 2 4 3 7 11 5 9
Solving Sequence
4,8 1,3
2 7 9 6 5 11 10
c
3
c
2
c
7
c
8
c
6
c
5
c
11
c
9
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.98593 × 10
23
u
59
+ 4.69641 × 10
23
u
58
+ ··· + 1.04287 × 10
24
b + 1.61518 × 10
24
,
3.87855 × 10
23
u
59
6.98208 × 10
22
u
58
+ ··· + 5.21436 × 10
23
a 1.87163 × 10
24
, u
60
+ u
59
+ ··· + 2u + 1i
I
u
2
= hb + u, u
3
+ u
2
+ a + u 1, u
4
u
2
+ 1i
I
u
3
= h−u
7
+ u
5
2u
3
+ b + u, u
5
+ a u, u
10
2u
8
+ 3u
6
u
5
2u
4
+ u
3
+ u
2
u + 1i
I
u
4
= hu
3
+ b u, u
3
+ u
2
+ a 1, u
4
u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.99×10
23
u
59
+4.70×10
23
u
58
+· · ·+1.04×10
24
b+1.62×10
24
, 3.88×
10
23
u
59
6.98×10
22
u
58
+· · ·+5.21×10
23
a1.87×10
24
, u
60
+u
59
+· · ·+2u+1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
0.743821u
59
+ 0.133901u
58
+ ··· + 0.842070u + 3.58938
0.190429u
59
0.450334u
58
+ ··· + 0.891441u 1.54878
a
3
=
1
u
2
a
2
=
1.04281u
59
0.496774u
58
+ ··· + 2.17071u + 3.63527
1.12830u
59
+ 0.201741u
58
+ ··· + 4.11950u 0.780593
a
7
=
u
u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
6
=
u
3
u
3
+ u
a
5
=
0.108079u
59
1.37479u
58
+ ··· + 6.24741u 2.70886
1.06440u
59
+ 0.333999u
58
+ ··· + 3.85330u 0.118756
a
11
=
1.14257u
59
0.131348u
58
+ ··· + 0.640675u + 3.85388
1.04542u
59
+ 0.113508u
58
+ ··· + 3.47215u 0.882378
a
10
=
0.423997u
59
1.42113u
58
+ ··· + 4.04661u 5.47905
0.233872u
59
0.446189u
58
+ ··· + 2.50575u + 0.581286
a
10
=
0.423997u
59
1.42113u
58
+ ··· + 4.04661u 5.47905
0.233872u
59
0.446189u
58
+ ··· + 2.50575u + 0.581286
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1243755023537317604710317
521436085097447226945316
u
59
113387074254912883763919
260718042548723613472658
u
58
+ ··· +
5765858860985229173060379
521436085097447226945316
u
629576893531561210869417
130359021274361806736329
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
60
+ 4u
59
+ ··· + 20u + 4
c
2
u
60
+ 28u
59
+ ··· + 136u + 16
c
3
, c
7
u
60
u
59
+ ··· 2u + 1
c
4
, c
10
u
60
u
59
+ ··· + 8u + 1
c
6
u
60
3u
59
+ ··· 628u + 261
c
8
u
60
31u
59
+ ··· 6u + 1
c
9
, c
11
u
60
+ 19u
59
+ ··· + 54u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
60
+ 28y
59
+ ··· + 136y + 16
c
2
y
60
+ 12y
59
+ ··· + 13024y + 256
c
3
, c
7
y
60
31y
59
+ ··· 6y + 1
c
4
, c
10
y
60
19y
59
+ ··· 54y + 1
c
6
y
60
+ 29y
59
+ ··· 446062y + 68121
c
8
y
60
+ y
59
+ ··· + 38y + 1
c
9
, c
11
y
60
+ 49y
59
+ ··· 562y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.903831 + 0.403972I
a = 1.269250 0.398175I
b = 1.057390 + 0.767924I
0.07179 + 4.23224I 2.32754 7.48197I
u = 0.903831 0.403972I
a = 1.269250 + 0.398175I
b = 1.057390 0.767924I
0.07179 4.23224I 2.32754 + 7.48197I
u = 0.711823 + 0.747660I
a = 0.406775 0.002759I
b = 0.634669 0.607886I
0.59950 7.44517I 1.81786 + 8.61499I
u = 0.711823 0.747660I
a = 0.406775 + 0.002759I
b = 0.634669 + 0.607886I
0.59950 + 7.44517I 1.81786 8.61499I
u = 0.804581 + 0.489615I
a = 0.265943 0.865672I
b = 0.177298 + 0.044040I
1.74326 + 2.05593I 4.38675 3.92763I
u = 0.804581 0.489615I
a = 0.265943 + 0.865672I
b = 0.177298 0.044040I
1.74326 2.05593I 4.38675 + 3.92763I
u = 0.859520 + 0.676363I
a = 0.964914 0.424298I
b = 0.480610 + 0.345118I
0.30698 + 3.25660I 0. 2.79575I
u = 0.859520 0.676363I
a = 0.964914 + 0.424298I
b = 0.480610 0.345118I
0.30698 3.25660I 0. + 2.79575I
u = 0.311259 + 0.850032I
a = 0.321328 0.147611I
b = 0.73288 + 1.72138I
1.72838 + 10.40930I 1.97334 6.85461I
u = 0.311259 0.850032I
a = 0.321328 + 0.147611I
b = 0.73288 1.72138I
1.72838 10.40930I 1.97334 + 6.85461I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.865604 + 0.182246I
a = 0.606319 + 0.298940I
b = 0.748686 0.118582I
1.47274 0.43868I 6.40126 + 0.73626I
u = 0.865604 0.182246I
a = 0.606319 0.298940I
b = 0.748686 + 0.118582I
1.47274 + 0.43868I 6.40126 0.73626I
u = 0.272152 + 0.836204I
a = 0.196628 + 0.183823I
b = 0.68548 1.62535I
2.73192 4.52059I 0.21234 + 2.21964I
u = 0.272152 0.836204I
a = 0.196628 0.183823I
b = 0.68548 + 1.62535I
2.73192 + 4.52059I 0.21234 2.21964I
u = 0.568756 + 0.644224I
a = 0.676994 + 0.457932I
b = 0.717357 0.302413I
5.04608 2.62544I 9.38058 + 3.85437I
u = 0.568756 0.644224I
a = 0.676994 0.457932I
b = 0.717357 + 0.302413I
5.04608 + 2.62544I 9.38058 3.85437I
u = 0.993886 + 0.578329I
a = 0.955168 + 0.848146I
b = 0.415861 + 0.077795I
3.79990 2.15619I 0
u = 0.993886 0.578329I
a = 0.955168 0.848146I
b = 0.415861 0.077795I
3.79990 + 2.15619I 0
u = 1.054100 + 0.478696I
a = 1.15838 + 1.04975I
b = 0.14104 + 1.62136I
0.06948 + 4.64990I 0
u = 1.054100 0.478696I
a = 1.15838 1.04975I
b = 0.14104 1.62136I
0.06948 4.64990I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.080780 + 0.429889I
a = 0.96586 1.23049I
b = 0.319260 0.470303I
0.799952 + 0.856311I 0
u = 1.080780 0.429889I
a = 0.96586 + 1.23049I
b = 0.319260 + 0.470303I
0.799952 0.856311I 0
u = 0.210101 + 0.809324I
a = 0.740667 0.015178I
b = 0.105661 + 1.028970I
3.79462 4.80277I 0.86247 + 2.90071I
u = 0.210101 0.809324I
a = 0.740667 + 0.015178I
b = 0.105661 1.028970I
3.79462 + 4.80277I 0.86247 2.90071I
u = 1.116060 + 0.386772I
a = 1.21794 1.49474I
b = 0.00600 1.76185I
3.40701 1.33155I 0
u = 1.116060 0.386772I
a = 1.21794 + 1.49474I
b = 0.00600 + 1.76185I
3.40701 + 1.33155I 0
u = 0.144728 + 0.798733I
a = 0.670793 + 0.046459I
b = 0.000564 1.065940I
4.37725 1.04056I 1.90122 + 2.49141I
u = 0.144728 0.798733I
a = 0.670793 0.046459I
b = 0.000564 + 1.065940I
4.37725 + 1.04056I 1.90122 2.49141I
u = 1.094520 + 0.479352I
a = 1.03063 + 1.15150I
b = 0.414981 + 0.408719I
0.42302 6.32152I 0
u = 1.094520 0.479352I
a = 1.03063 1.15150I
b = 0.414981 0.408719I
0.42302 + 6.32152I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.339818 + 0.708730I
a = 0.355808 0.663857I
b = 1.06664 + 1.47014I
4.04431 + 4.50698I 7.28201 4.72365I
u = 0.339818 0.708730I
a = 0.355808 + 0.663857I
b = 1.06664 1.47014I
4.04431 4.50698I 7.28201 + 4.72365I
u = 1.128850 + 0.492143I
a = 0.52081 2.12283I
b = 1.32820 1.57388I
2.66218 + 6.38495I 0
u = 1.128850 0.492143I
a = 0.52081 + 2.12283I
b = 1.32820 + 1.57388I
2.66218 6.38495I 0
u = 1.216210 + 0.225171I
a = 1.10465 + 1.80874I
b = 0.02516 + 1.64383I
6.74362 7.16149I 0
u = 1.216210 0.225171I
a = 1.10465 1.80874I
b = 0.02516 1.64383I
6.74362 + 7.16149I 0
u = 1.112300 + 0.548551I
a = 0.84176 + 2.42145I
b = 1.34785 + 2.08020I
1.78746 9.32372I 0
u = 1.112300 0.548551I
a = 0.84176 2.42145I
b = 1.34785 2.08020I
1.78746 + 9.32372I 0
u = 1.212780 + 0.262306I
a = 1.10372 1.77604I
b = 0.02790 1.67922I
7.49647 + 1.10876I 0
u = 1.212780 0.262306I
a = 1.10372 + 1.77604I
b = 0.02790 + 1.67922I
7.49647 1.10876I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.207080 + 0.312500I
a = 0.432975 + 1.070400I
b = 0.694965 + 0.705252I
8.19036 + 1.16781I 0
u = 1.207080 0.312500I
a = 0.432975 1.070400I
b = 0.694965 0.705252I
8.19036 1.16781I 0
u = 1.207510 + 0.352417I
a = 0.476722 1.234610I
b = 0.746612 0.850988I
8.50343 + 4.91869I 0
u = 1.207510 0.352417I
a = 0.476722 + 1.234610I
b = 0.746612 + 0.850988I
8.50343 4.91869I 0
u = 1.179680 + 0.510060I
a = 0.83860 1.38186I
b = 0.05723 1.67219I
7.41896 3.74798I 0
u = 1.179680 0.510060I
a = 0.83860 + 1.38186I
b = 0.05723 + 1.67219I
7.41896 + 3.74798I 0
u = 1.173440 + 0.538194I
a = 0.77481 + 1.33580I
b = 0.07894 + 1.64826I
6.63935 + 9.77588I 0
u = 1.173440 0.538194I
a = 0.77481 1.33580I
b = 0.07894 1.64826I
6.63935 9.77588I 0
u = 1.169570 + 0.567517I
a = 1.03891 2.10766I
b = 0.89396 2.01477I
5.40914 + 9.70793I 0
u = 1.169570 0.567517I
a = 1.03891 + 2.10766I
b = 0.89396 + 2.01477I
5.40914 9.70793I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.163930 + 0.586363I
a = 1.12390 + 2.15224I
b = 0.86334 + 2.13698I
4.2834 15.7183I 0
u = 1.163930 0.586363I
a = 1.12390 2.15224I
b = 0.86334 2.13698I
4.2834 + 15.7183I 0
u = 0.429148 + 0.530188I
a = 0.903246 0.132373I
b = 0.249666 + 0.565526I
1.72663 0.52634I 4.33031 + 0.44248I
u = 0.429148 0.530188I
a = 0.903246 + 0.132373I
b = 0.249666 0.565526I
1.72663 + 0.52634I 4.33031 0.44248I
u = 0.637665 + 0.183912I
a = 0.11399 1.94899I
b = 0.738126 0.352707I
1.24161 + 2.23775I 0.61490 2.94515I
u = 0.637665 0.183912I
a = 0.11399 + 1.94899I
b = 0.738126 + 0.352707I
1.24161 2.23775I 0.61490 + 2.94515I
u = 0.362759 + 0.416974I
a = 0.17781 1.91746I
b = 1.45310 + 0.56258I
2.02553 1.88873I 4.74604 + 1.07620I
u = 0.362759 0.416974I
a = 0.17781 + 1.91746I
b = 1.45310 0.56258I
2.02553 + 1.88873I 4.74604 1.07620I
u = 0.262460 + 0.449731I
a = 1.74210 + 0.98505I
b = 0.919872 0.033488I
1.87789 + 2.29756I 4.03068 3.27403I
u = 0.262460 0.449731I
a = 1.74210 0.98505I
b = 0.919872 + 0.033488I
1.87789 2.29756I 4.03068 + 3.27403I
10
II. I
u
2
= hb + u, u
3
+ u
2
+ a + u 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
u
3
u
2
u + 1
u
a
3
=
1
u
2
a
2
=
u
3
u
2
u + 2
u
2
u
a
7
=
u
u
3
+ u
a
9
=
u
3
0
a
6
=
u
3
u
3
+ u
a
5
=
u
2
+ u
u
2
+ 1
a
11
=
u
3
u
2
+ 1
u
a
10
=
u
3
u
2
+ u
u
3
u
a
10
=
u
3
u
2
+ u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
+ 1)
2
c
2
(u + 1)
4
c
3
, c
4
, c
6
c
7
, c
10
u
4
u
2
+ 1
c
8
, c
9
(u
2
u + 1)
2
c
11
(u
2
+ u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y + 1)
4
c
2
(y 1)
4
c
3
, c
4
, c
6
c
7
, c
10
(y
2
y + 1)
2
c
8
, c
9
, c
11
(y
2
+ y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.366025 0.366025I
b = 0.866025 0.500000I
1.64493 + 4.05977I 4.00000 6.92820I
u = 0.866025 0.500000I
a = 0.366025 + 0.366025I
b = 0.866025 + 0.500000I
1.64493 4.05977I 4.00000 + 6.92820I
u = 0.866025 + 0.500000I
a = 1.36603 + 1.36603I
b = 0.866025 0.500000I
1.64493 4.05977I 4.00000 + 6.92820I
u = 0.866025 0.500000I
a = 1.36603 1.36603I
b = 0.866025 + 0.500000I
1.64493 + 4.05977I 4.00000 6.92820I
14
III. I
u
3
=
h−u
7
+u
5
2u
3
+b+u, u
5
+au, u
10
2u
8
+3u
6
u
5
2u
4
+u
3
+u
2
u+1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
u
5
+ u
u
7
u
5
+ 2u
3
u
a
3
=
1
u
2
a
2
=
u
8
u
6
+ u
5
+ u
4
u
3
+ u
u
8
+ u
7
2u
6
u
5
+ 2u
4
+ u
3
u
2
a
7
=
u
u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
6
=
u
3
u
3
+ u
a
5
=
1
u
2
a
11
=
u
u
3
u
a
10
=
0
u
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
4u
3
+ 4u 2
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
3
, c
4
, c
7
c
10
u
10
2u
8
+ 3u
6
+ u
5
2u
4
u
3
+ u
2
+ u + 1
c
6
u
10
2u
8
+ 2u
7
+ u
6
+ u
5
+ 4u
4
+ 3u
3
+ 9u
2
+ 3u + 3
c
8
u
10
4u
9
+ 10u
8
16u
7
+ 19u
6
15u
5
+ 8u
4
u
3
u
2
+ u + 1
c
9
, c
11
u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 15u
5
+ 8u
4
+ u
3
u
2
u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
2
+ y + 1)
5
c
3
, c
4
, c
7
c
10
y
10
4y
9
+ 10y
8
16y
7
+ 19y
6
15y
5
+ 8y
4
y
3
y
2
+ y + 1
c
6
y
10
4y
9
+ 6y
8
y
6
35y
5
+ 4y
4
+ 63y
3
+ 87y
2
+ 45y + 9
c
8
, c
9
, c
11
y
10
+ 4y
9
+ ··· 3y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.756352 + 0.712044I
a = 0.217740 0.005024I
b = 0.508756 + 0.631168I
2.02988I 0. 3.46410I
u = 0.756352 0.712044I
a = 0.217740 + 0.005024I
b = 0.508756 0.631168I
2.02988I 0. + 3.46410I
u = 1.053350 + 0.290333I
a = 1.40235 + 1.80795I
b = 0.16807 + 1.84530I
2.02988I 0. + 3.46410I
u = 1.053350 0.290333I
a = 1.40235 1.80795I
b = 0.16807 1.84530I
2.02988I 0. 3.46410I
u = 0.913599 + 0.686557I
a = 1.029360 + 0.529489I
b = 0.538198 0.232909I
2.02988I 0. 3.46410I
u = 0.913599 0.686557I
a = 1.029360 0.529489I
b = 0.538198 + 0.232909I
2.02988I 0. + 3.46410I
u = 1.069540 + 0.472028I
a = 0.00856 + 2.38074I
b = 1.89598 + 1.33554I
2.02988I 0. + 3.46410I
u = 1.069540 0.472028I
a = 0.00856 2.38074I
b = 1.89598 1.33554I
2.02988I 0. 3.46410I
u = 0.173445 + 0.636239I
a = 0.294586 + 0.665896I
b = 0.757353 1.050530I
2.02988I 0. + 3.46410I
u = 0.173445 0.636239I
a = 0.294586 0.665896I
b = 0.757353 + 1.050530I
2.02988I 0. 3.46410I
18
IV. I
u
4
= hu
3
+ b u, u
3
+ u
2
+ a 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
1
=
u
3
u
2
+ 1
u
3
+ u
a
3
=
1
u
2
a
2
=
u
3
u
2
+ 2
u
3
+ u
2
+ u
a
7
=
u
u
3
+ u
a
9
=
u
3
0
a
6
=
u
3
u
3
+ u
a
5
=
u + 1
u
2
a
11
=
u
2
u + 1
u
3
+ u
a
10
=
1
u
a
10
=
1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
+ 1)
2
c
2
(u + 1)
4
c
3
, c
4
, c
6
c
7
, c
10
u
4
u
2
+ 1
c
8
, c
9
(u
2
u + 1)
2
c
11
(u
2
+ u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y + 1)
4
c
2
(y 1)
4
c
3
, c
4
, c
6
c
7
, c
10
(y
2
y + 1)
2
c
8
, c
9
, c
11
(y
2
+ y + 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.50000 1.86603I
b = 0.866025 0.500000I
1.64493 4.00000
u = 0.866025 0.500000I
a = 0.50000 + 1.86603I
b = 0.866025 + 0.500000I
1.64493 4.00000
u = 0.866025 + 0.500000I
a = 0.500000 0.133975I
b = 0.866025 0.500000I
1.64493 4.00000
u = 0.866025 0.500000I
a = 0.500000 + 0.133975I
b = 0.866025 + 0.500000I
1.64493 4.00000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
((u
2
+ 1)
4
)(u
2
u + 1)
5
(u
60
+ 4u
59
+ ··· + 20u + 4)
c
2
((u + 1)
8
)(u
2
+ u + 1)
5
(u
60
+ 28u
59
+ ··· + 136u + 16)
c
3
, c
7
(u
4
u
2
+ 1)
2
(u
10
2u
8
+ 3u
6
+ u
5
2u
4
u
3
+ u
2
+ u + 1)
· (u
60
u
59
+ ··· 2u + 1)
c
4
, c
10
(u
4
u
2
+ 1)
2
(u
10
2u
8
+ 3u
6
+ u
5
2u
4
u
3
+ u
2
+ u + 1)
· (u
60
u
59
+ ··· + 8u + 1)
c
6
(u
4
u
2
+ 1)
2
(u
10
2u
8
+ 2u
7
+ u
6
+ u
5
+ 4u
4
+ 3u
3
+ 9u
2
+ 3u + 3)
· (u
60
3u
59
+ ··· 628u + 261)
c
8
(u
2
u + 1)
4
· (u
10
4u
9
+ 10u
8
16u
7
+ 19u
6
15u
5
+ 8u
4
u
3
u
2
+ u + 1)
· (u
60
31u
59
+ ··· 6u + 1)
c
9
(u
2
u + 1)
4
· (u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 15u
5
+ 8u
4
+ u
3
u
2
u + 1)
· (u
60
+ 19u
59
+ ··· + 54u + 1)
c
11
(u
2
+ u + 1)
4
· (u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 15u
5
+ 8u
4
+ u
3
u
2
u + 1)
· (u
60
+ 19u
59
+ ··· + 54u + 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y + 1)
8
)(y
2
+ y + 1)
5
(y
60
+ 28y
59
+ ··· + 136y + 16)
c
2
((y 1)
8
)(y
2
+ y + 1)
5
(y
60
+ 12y
59
+ ··· + 13024y + 256)
c
3
, c
7
(y
2
y + 1)
4
· (y
10
4y
9
+ 10y
8
16y
7
+ 19y
6
15y
5
+ 8y
4
y
3
y
2
+ y + 1)
· (y
60
31y
59
+ ··· 6y + 1)
c
4
, c
10
(y
2
y + 1)
4
· (y
10
4y
9
+ 10y
8
16y
7
+ 19y
6
15y
5
+ 8y
4
y
3
y
2
+ y + 1)
· (y
60
19y
59
+ ··· 54y + 1)
c
6
(y
2
y + 1)
4
· (y
10
4y
9
+ 6y
8
y
6
35y
5
+ 4y
4
+ 63y
3
+ 87y
2
+ 45y + 9)
· (y
60
+ 29y
59
+ ··· 446062y + 68121)
c
8
((y
2
+ y + 1)
4
)(y
10
+ 4y
9
+ ··· 3y + 1)(y
60
+ y
59
+ ··· + 38y + 1)
c
9
, c
11
((y
2
+ y + 1)
4
)(y
10
+ 4y
9
+ ··· 3y + 1)(y
60
+ 49y
59
+ ··· 562y + 1)
24