11a
105
(K11a
105
)
A knot diagram
1
Linearized knot diagam
5 1 8 7 2 10 3 4 11 6 9
Solving Sequence
4,9
8
1,3
2 7 5 11 10 6
c
8
c
3
c
2
c
7
c
4
c
11
c
9
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.12515 × 10
31
u
59
+ 2.85842 × 10
31
u
58
+ ··· + 3.51410 × 10
31
b + 1.89741 × 10
31
,
3.51793 × 10
30
u
59
1.13761 × 10
31
u
58
+ ··· + 3.51410 × 10
31
a 1.05909 × 10
32
, u
60
+ u
59
+ ··· 4u 4i
I
u
2
= h2b + 2a + u, 2a
2
+ 2au + 2a + u + 3, u
2
2i
I
v
1
= ha, b v 1, v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.13×10
31
u
59
+2.86×10
31
u
58
+· · ·+3.51×10
31
b+1.90×10
31
, 3.52×
10
30
u
59
1.14×10
31
u
58
+· · ·+3.51×10
31
a1.06×10
32
, u
60
+u
59
+· · ·4u4i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
0.100109u
59
+ 0.323727u
58
+ ··· + 6.24684u + 3.01381
0.320182u
59
0.813414u
58
+ ··· + 3.67561u 0.539941
a
3
=
u
u
3
+ u
a
2
=
0.334020u
59
+ 0.230566u
58
+ ··· + 9.56791u + 3.49275
0.161128u
59
0.574931u
58
+ ··· + 3.42064u 0.184944
a
7
=
u
2
+ 1
u
4
2u
2
a
5
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
11
=
0.220073u
59
0.489687u
58
+ ··· + 9.92245u + 2.47387
0.320182u
59
0.813414u
58
+ ··· + 3.67561u 0.539941
a
10
=
1.05972u
59
0.120964u
58
+ ··· 11.8926u 2.73515
0.550795u
59
+ 1.41033u
58
+ ··· 3.83041u + 0.910068
a
6
=
0.301975u
59
0.154593u
58
+ ··· 8.20559u 4.09227
0.609330u
59
+ 0.192047u
58
+ ··· + 2.33523u 2.20792
a
6
=
0.301975u
59
0.154593u
58
+ ··· 8.20559u 4.09227
0.609330u
59
+ 0.192047u
58
+ ··· + 2.33523u 2.20792
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.29031u
59
+ 4.98190u
58
+ ··· + 10.5616u + 3.04276
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
60
+ 3u
59
+ ··· 21u 7
c
2
u
60
+ 29u
59
+ ··· + 259u + 49
c
3
, c
7
, c
8
u
60
+ u
59
+ ··· 4u 4
c
4
u
60
3u
59
+ ··· + 1892u + 748
c
6
, c
10
u
60
2u
59
+ ··· + 10u + 1
c
9
, c
11
u
60
+ 20u
59
+ ··· 58u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
60
29y
59
+ ··· 259y + 49
c
2
y
60
+ 11y
59
+ ··· 38171y + 2401
c
3
, c
7
, c
8
y
60
55y
59
+ ··· + 144y + 16
c
4
y
60
+ 5y
59
+ ··· 713328y + 559504
c
6
, c
10
y
60
+ 20y
59
+ ··· 58y + 1
c
9
, c
11
y
60
+ 44y
59
+ ··· 3138y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.856412 + 0.448917I
a = 0.069748 0.309881I
b = 0.045178 + 1.220370I
2.51877 0.25684I 5.58857 0.91280I
u = 0.856412 0.448917I
a = 0.069748 + 0.309881I
b = 0.045178 1.220370I
2.51877 + 0.25684I 5.58857 + 0.91280I
u = 0.977737 + 0.387234I
a = 0.646202 + 0.329883I
b = 0.199913 1.371860I
2.99290 0.67802I 7.00000 + 0.I
u = 0.977737 0.387234I
a = 0.646202 0.329883I
b = 0.199913 + 1.371860I
2.99290 + 0.67802I 7.00000 + 0.I
u = 0.791019 + 0.508592I
a = 0.325990 0.504077I
b = 0.39274 + 1.43077I
1.89650 + 6.03755I 6.88192 4.20349I
u = 0.791019 0.508592I
a = 0.325990 + 0.504077I
b = 0.39274 1.43077I
1.89650 6.03755I 6.88192 + 4.20349I
u = 1.068800 + 0.379471I
a = 0.494885 + 0.197200I
b = 0.116006 1.361990I
3.09128 5.18590I 0
u = 1.068800 0.379471I
a = 0.494885 0.197200I
b = 0.116006 + 1.361990I
3.09128 + 5.18590I 0
u = 0.301071 + 0.803639I
a = 1.174960 0.782603I
b = 0.48181 1.50728I
3.49971 10.62980I 5.43356 + 8.51745I
u = 0.301071 0.803639I
a = 1.174960 + 0.782603I
b = 0.48181 + 1.50728I
3.49971 + 10.62980I 5.43356 8.51745I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.256488 + 0.801752I
a = 1.204450 0.589990I
b = 0.206818 1.186610I
4.44819 + 4.71708I 3.57538 3.65619I
u = 0.256488 0.801752I
a = 1.204450 + 0.589990I
b = 0.206818 + 1.186610I
4.44819 4.71708I 3.57538 + 3.65619I
u = 0.189775 + 0.793215I
a = 0.692391 + 1.041360I
b = 0.34795 + 1.45648I
5.43709 + 4.96254I 2.32735 3.96471I
u = 0.189775 0.793215I
a = 0.692391 1.041360I
b = 0.34795 1.45648I
5.43709 4.96254I 2.32735 + 3.96471I
u = 0.129554 + 0.796054I
a = 0.844160 + 0.874550I
b = 0.043508 + 1.278600I
5.97615 + 0.93056I 1.28101 1.70769I
u = 0.129554 0.796054I
a = 0.844160 0.874550I
b = 0.043508 1.278600I
5.97615 0.93056I 1.28101 + 1.70769I
u = 1.206730 + 0.176348I
a = 1.133230 0.267587I
b = 0.418519 + 0.150611I
1.73220 + 0.82680I 0
u = 1.206730 0.176348I
a = 1.133230 + 0.267587I
b = 0.418519 0.150611I
1.73220 0.82680I 0
u = 1.243970 + 0.018853I
a = 1.26750 0.88605I
b = 0.868501 + 0.830940I
4.34425 + 2.84333I 0
u = 1.243970 0.018853I
a = 1.26750 + 0.88605I
b = 0.868501 0.830940I
4.34425 2.84333I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.268078 + 0.645087I
a = 0.627642 0.518062I
b = 1.102390 0.396751I
2.44529 4.90792I 9.88732 + 7.39777I
u = 0.268078 0.645087I
a = 0.627642 + 0.518062I
b = 1.102390 + 0.396751I
2.44529 + 4.90792I 9.88732 7.39777I
u = 1.289880 + 0.180120I
a = 1.66882 + 0.29795I
b = 0.038165 + 1.051040I
4.50001 0.00587I 0
u = 1.289880 0.180120I
a = 1.66882 0.29795I
b = 0.038165 1.051040I
4.50001 + 0.00587I 0
u = 0.112152 + 0.661191I
a = 0.714620 0.045202I
b = 0.426053 + 0.174796I
1.43580 + 2.21650I 1.82720 4.33305I
u = 0.112152 0.661191I
a = 0.714620 + 0.045202I
b = 0.426053 0.174796I
1.43580 2.21650I 1.82720 + 4.33305I
u = 1.334650 + 0.196412I
a = 1.04014 + 1.40007I
b = 0.877556 1.103860I
5.48660 + 1.01058I 0
u = 1.334650 0.196412I
a = 1.04014 1.40007I
b = 0.877556 + 1.103860I
5.48660 1.01058I 0
u = 1.333660 + 0.221254I
a = 1.82839 + 0.49243I
b = 0.448347 + 1.321910I
5.17207 + 5.38877I 0
u = 1.333660 0.221254I
a = 1.82839 0.49243I
b = 0.448347 1.321910I
5.17207 5.38877I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.331350 + 0.263582I
a = 1.077490 + 0.564419I
b = 0.496619 0.385771I
3.10541 5.57944I 0
u = 1.331350 0.263582I
a = 1.077490 0.564419I
b = 0.496619 + 0.385771I
3.10541 + 5.57944I 0
u = 1.352790 + 0.191832I
a = 1.57075 0.21221I
b = 1.044160 0.411993I
5.42970 3.53470I 0
u = 1.352790 0.191832I
a = 1.57075 + 0.21221I
b = 1.044160 + 0.411993I
5.42970 + 3.53470I 0
u = 1.334670 + 0.330501I
a = 1.55791 + 0.32540I
b = 0.175954 1.190020I
1.38298 + 3.12184I 0
u = 1.334670 0.330501I
a = 1.55791 0.32540I
b = 0.175954 + 1.190020I
1.38298 3.12184I 0
u = 0.461911 + 0.406202I
a = 0.28123 1.64366I
b = 0.821473 + 0.229272I
3.41083 + 1.56394I 13.77106 0.02572I
u = 0.461911 0.406202I
a = 0.28123 + 1.64366I
b = 0.821473 0.229272I
3.41083 1.56394I 13.77106 + 0.02572I
u = 1.38882
a = 0.894922
b = 0.0181684
6.53287 0
u = 1.373810 + 0.327896I
a = 1.74591 + 0.30759I
b = 0.46361 1.49242I
0.49565 9.00597I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.373810 0.327896I
a = 1.74591 0.30759I
b = 0.46361 + 1.49242I
0.49565 + 9.00597I 0
u = 1.40111 + 0.26118I
a = 1.94947 + 0.43052I
b = 1.259340 + 0.325492I
7.75888 + 8.23897I 0
u = 1.40111 0.26118I
a = 1.94947 0.43052I
b = 1.259340 0.325492I
7.75888 8.23897I 0
u = 0.071840 + 0.552974I
a = 0.01528 3.02987I
b = 0.330288 1.143560I
0.69378 2.54574I 3.93469 + 4.38996I
u = 0.071840 0.552974I
a = 0.01528 + 3.02987I
b = 0.330288 + 1.143560I
0.69378 + 2.54574I 3.93469 4.38996I
u = 1.43987 + 0.14560I
a = 1.24613 + 0.98490I
b = 0.917886 + 0.053868I
9.46417 + 0.48874I 0
u = 1.43987 0.14560I
a = 1.24613 0.98490I
b = 0.917886 0.053868I
9.46417 0.48874I 0
u = 1.41119 + 0.32817I
a = 1.73533 0.42501I
b = 0.304129 + 1.125510I
0.85298 8.80531I 0
u = 1.41119 0.32817I
a = 1.73533 + 0.42501I
b = 0.304129 1.125510I
0.85298 + 8.80531I 0
u = 1.43461 + 0.32355I
a = 2.01968 0.51742I
b = 0.55973 + 1.52348I
2.0394 + 14.7170I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43461 0.32355I
a = 2.01968 + 0.51742I
b = 0.55973 1.52348I
2.0394 14.7170I 0
u = 0.263721 + 0.414290I
a = 0.089083 + 0.498277I
b = 0.547343 + 0.345848I
0.480323 + 1.226230I 5.70379 5.33805I
u = 0.263721 0.414290I
a = 0.089083 0.498277I
b = 0.547343 0.345848I
0.480323 1.226230I 5.70379 + 5.33805I
u = 1.51224 + 0.04246I
a = 0.021792 + 1.121390I
b = 0.159960 1.012480I
5.24444 0.82507I 0
u = 1.51224 0.04246I
a = 0.021792 1.121390I
b = 0.159960 + 1.012480I
5.24444 + 0.82507I 0
u = 0.085208 + 0.469629I
a = 0.229268 0.034778I
b = 0.760151 + 0.894401I
0.97414 + 1.49816I 3.90867 + 1.16289I
u = 0.085208 0.469629I
a = 0.229268 + 0.034778I
b = 0.760151 0.894401I
0.97414 1.49816I 3.90867 1.16289I
u = 1.52569 + 0.08141I
a = 0.37288 + 1.45493I
b = 0.438151 1.250040I
5.76976 4.33338I 0
u = 1.52569 0.08141I
a = 0.37288 1.45493I
b = 0.438151 + 1.250040I
5.76976 + 4.33338I 0
u = 0.439722
a = 1.31943
b = 0.0992099
0.965483 10.6880
10
II. I
u
2
= h2b + 2a + u, 2a
2
+ 2au + 2a + u + 3, u
2
2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
2
a
1
=
a
a
1
2
u
a
3
=
u
u
a
2
=
a + u
a
3
2
u
a
7
=
1
0
a
5
=
u
u
a
11
=
1
2
u
a
1
2
u
a
10
=
1
2
au +
3
2
a
1
2
u 1
a
6
=
a
a
1
2
u
a
6
=
a
a
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 2u 16
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
2)
2
c
5
(u 1)
4
c
6
, c
9
(u
2
u + 1)
2
c
10
, c
11
(u
2
+ u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y 2)
4
c
6
, c
9
, c
10
c
11
(y
2
+ y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 1.20711 + 0.86603I
b = 0.500000 0.866025I
6.57974 + 2.02988I 14.0000 3.4641I
u = 1.41421
a = 1.20711 0.86603I
b = 0.500000 + 0.866025I
6.57974 2.02988I 14.0000 + 3.4641I
u = 1.41421
a = 0.207107 + 0.866025I
b = 0.500000 0.866025I
6.57974 + 2.02988I 14.0000 3.4641I
u = 1.41421
a = 0.207107 0.866025I
b = 0.500000 + 0.866025I
6.57974 2.02988I 14.0000 + 3.4641I
14
III. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
v
0
a
9
=
1
0
a
8
=
1
0
a
1
=
0
v + 1
a
3
=
v
0
a
2
=
v
v + 1
a
7
=
1
0
a
5
=
v
0
a
11
=
v + 1
v + 1
a
10
=
v + 1
v
a
6
=
0
v 1
a
6
=
0
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 10
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
5
(u + 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
6
, c
11
u
2
+ u + 1
c
9
, c
10
u
2
u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
y
2
+ y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 12.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 12.00000 3.46410I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u + 1)
4
(u
60
+ 3u
59
+ ··· 21u 7)
c
2
((u + 1)
6
)(u
60
+ 29u
59
+ ··· + 259u + 49)
c
3
, c
7
, c
8
u
2
(u
2
2)
2
(u
60
+ u
59
+ ··· 4u 4)
c
4
u
2
(u
2
2)
2
(u
60
3u
59
+ ··· + 1892u + 748)
c
5
((u 1)
4
)(u + 1)
2
(u
60
+ 3u
59
+ ··· 21u 7)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
60
2u
59
+ ··· + 10u + 1)
c
9
((u
2
u + 1)
3
)(u
60
+ 20u
59
+ ··· 58u + 1)
c
10
(u
2
u + 1)(u
2
+ u + 1)
2
(u
60
2u
59
+ ··· + 10u + 1)
c
11
((u
2
+ u + 1)
3
)(u
60
+ 20u
59
+ ··· 58u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
6
)(y
60
29y
59
+ ··· 259y + 49)
c
2
((y 1)
6
)(y
60
+ 11y
59
+ ··· 38171y + 2401)
c
3
, c
7
, c
8
y
2
(y 2)
4
(y
60
55y
59
+ ··· + 144y + 16)
c
4
y
2
(y 2)
4
(y
60
+ 5y
59
+ ··· 713328y + 559504)
c
6
, c
10
((y
2
+ y + 1)
3
)(y
60
+ 20y
59
+ ··· 58y + 1)
c
9
, c
11
((y
2
+ y + 1)
3
)(y
60
+ 44y
59
+ ··· 3138y + 1)
20