11a
107
(K11a
107
)
A knot diagram
1
Linearized knot diagam
5 1 9 8 2 11 3 4 7 6 10
Solving Sequence
3,9 1,4
2 8 5 7 10 11 6
c
3
c
2
c
8
c
4
c
7
c
9
c
11
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
21
2u
20
+ ··· + b 1, u
21
3u
20
+ ··· + 2a 4, u
22
+ 3u
21
+ ··· + 8u + 2i
I
u
2
= h−18u
17
a + 8u
17
+ ··· 23a + 44, 2u
17
a + 2u
17
+ ··· 6a + 5, u
18
u
17
+ ··· + 3u 1i
I
u
3
= hb + 1, 2a u, u
2
+ 2i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
21
2u
20
+· · ·+b1, u
21
3u
20
+· · ·+2a4, u
22
+3u
21
+· · ·+8u+2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
1
=
1
2
u
21
+
3
2
u
20
+ ··· + 3u + 2
u
21
+ 2u
20
+ ··· + 4u + 1
a
4
=
1
u
2
a
2
=
1
2
u
21
+
1
2
u
20
+ ··· + u + 1
u
21
2u
20
+ ··· 4u 1
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
7
=
u
3
2u
u
3
+ u
a
10
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
11
=
1
2
u
21
1
2
u
20
+ ··· 3u
2
u
u
21
+ 2u
20
+ ··· + 3u + 1
a
6
=
3
2
u
21
+
9
2
u
20
+ ··· + 16u + 6
u
19
3u
18
+ ··· 6u 3
a
6
=
3
2
u
21
+
9
2
u
20
+ ··· + 16u + 6
u
19
3u
18
+ ··· 6u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8u
21
+18u
20
+102u
19
+188u
18
+534u
17
+810u
16
+1478u
15
+1814u
14
+2262u
13
+2108u
12
+
1682u
11
+880u
10
+82u
9
518u
8
676u
7
544u
6
244u
5
+10u
4
+118u
3
+108u
2
+62u+20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
22
+ u
21
+ ··· + u + 1
c
2
, c
11
u
22
+ 11u
21
+ ··· + 3u + 1
c
3
, c
4
, c
8
u
22
3u
21
+ ··· 8u + 2
c
7
u
22
+ 3u
21
+ ··· 16u + 2
c
9
u
22
+ 3u
21
+ ··· 64u
2
+ 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
22
11y
21
+ ··· 3y + 1
c
2
, c
11
y
22
+ 5y
21
+ ··· + 5y + 1
c
3
, c
4
, c
8
y
22
+ 21y
21
+ ··· + 8y + 4
c
7
y
22
+ 9y
21
+ ··· 24y + 4
c
9
y
22
+ 13y
21
+ ··· 2048y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.099141 + 1.060720I
a = 0.817278 + 0.592678I
b = 0.080492 0.751236I
0.63227 1.36325I 0.37432 + 3.42755I
u = 0.099141 1.060720I
a = 0.817278 0.592678I
b = 0.080492 + 0.751236I
0.63227 + 1.36325I 0.37432 3.42755I
u = 0.586314 + 0.582688I
a = 1.103980 0.244349I
b = 1.09402 + 1.14571I
5.03371 + 6.28370I 5.65704 3.70414I
u = 0.586314 0.582688I
a = 1.103980 + 0.244349I
b = 1.09402 1.14571I
5.03371 6.28370I 5.65704 + 3.70414I
u = 0.721391 + 0.399058I
a = 0.26176 + 2.28725I
b = 1.12690 1.26320I
4.37280 10.68880I 4.26664 + 8.95764I
u = 0.721391 0.399058I
a = 0.26176 2.28725I
b = 1.12690 + 1.26320I
4.37280 + 10.68880I 4.26664 8.95764I
u = 0.689708 + 0.121552I
a = 0.53466 2.02230I
b = 0.385181 + 0.996181I
2.02679 + 4.63959I 2.23017 7.26462I
u = 0.689708 0.121552I
a = 0.53466 + 2.02230I
b = 0.385181 0.996181I
2.02679 4.63959I 2.23017 + 7.26462I
u = 0.008426 + 0.680012I
a = 0.709637 + 0.189298I
b = 0.205333 0.521077I
0.56996 1.46936I 1.98240 + 4.73317I
u = 0.008426 0.680012I
a = 0.709637 0.189298I
b = 0.205333 + 0.521077I
0.56996 + 1.46936I 1.98240 4.73317I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.266288 + 1.293670I
a = 0.431973 1.182530I
b = 0.556035 + 1.146260I
2.37652 + 8.11206I 3.44648 8.70000I
u = 0.266288 1.293670I
a = 0.431973 + 1.182530I
b = 0.556035 1.146260I
2.37652 8.11206I 3.44648 + 8.70000I
u = 0.594447 + 0.259956I
a = 0.630368 0.825820I
b = 0.355452 + 0.329277I
1.11971 1.23902I 3.65819 + 2.25067I
u = 0.594447 0.259956I
a = 0.630368 + 0.825820I
b = 0.355452 0.329277I
1.11971 + 1.23902I 3.65819 2.25067I
u = 0.22843 + 1.41110I
a = 0.951917 0.568853I
b = 0.595163 + 0.296817I
4.25973 4.25337I 1.79063 + 2.48164I
u = 0.22843 1.41110I
a = 0.951917 + 0.568853I
b = 0.595163 0.296817I
4.25973 + 4.25337I 1.79063 2.48164I
u = 0.03042 + 1.47870I
a = 0.268624 0.247145I
b = 0.614464 0.368195I
7.27839 1.13244I 4.78640 + 6.09747I
u = 0.03042 1.47870I
a = 0.268624 + 0.247145I
b = 0.614464 + 0.368195I
7.27839 + 1.13244I 4.78640 6.09747I
u = 0.27059 + 1.46672I
a = 1.36291 + 1.22986I
b = 1.19776 1.31540I
10.3818 14.3064I 7.97941 + 8.76372I
u = 0.27059 1.46672I
a = 1.36291 1.22986I
b = 1.19776 + 1.31540I
10.3818 + 14.3064I 7.97941 8.76372I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17596 + 1.50335I
a = 0.040171 + 0.648478I
b = 1.19043 + 1.03440I
11.83210 + 3.58162I 9.60503 4.09544I
u = 0.17596 1.50335I
a = 0.040171 0.648478I
b = 1.19043 1.03440I
11.83210 3.58162I 9.60503 + 4.09544I
7
II. I
u
2
= h−18u
17
a + 8u
17
+ · · · 23a + 44, 2u
17
a + 2u
17
+ · · · 6a +
5, u
18
u
17
+ · · · + 3u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
1
=
a
0.947368au
17
0.421053u
17
+ ··· + 1.21053a 2.31579
a
4
=
1
u
2
a
2
=
0.421053au
17
+ 0.631579u
17
+ ··· 0.315789a + 2.47368
0.263158au
17
+ 0.105263u
17
+ ··· + 0.947368a 2.42105
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
7
=
u
3
2u
u
3
+ u
a
10
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
11
=
0.947368au
17
0.421053u
17
+ ··· + 2.21053a 1.31579
0.105263au
17
0.157895u
17
+ ··· 0.421053a 1.36842
a
6
=
1.57895au
17
1.36842u
17
+ ··· + 3.68421a 4.52632
0.105263au
17
+ 1.15789u
17
+ ··· 1.57895a + 2.36842
a
6
=
1.57895au
17
1.36842u
17
+ ··· + 3.68421a 4.52632
0.105263au
17
+ 1.15789u
17
+ ··· 1.57895a + 2.36842
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
4u
16
+ 36u
15
28u
14
+ 124u
13
72u
12
+ 196u
11
72u
10
+
120u
9
8u
7
+ 36u
6
8u
5
+ 4u
4
+ 16u
3
8u + 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
36
+ u
35
+ ··· 6u 3
c
2
, c
11
u
36
+ 21u
35
+ ··· + 12u + 9
c
3
, c
4
, c
8
(u
18
+ u
17
+ ··· 3u 1)
2
c
7
(u
18
u
17
+ ··· 13u 5)
2
c
9
(u
18
+ 3u
17
+ ··· + 3u + 3)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
36
21y
35
+ ··· 12y + 9
c
2
, c
11
y
36
13y
35
+ ··· 1260y + 81
c
3
, c
4
, c
8
(y
18
+ 17y
17
+ ··· 7y + 1)
2
c
7
(y
18
+ 5y
17
+ ··· 39y + 25)
2
c
9
(y
18
+ 13y
17
+ ··· 75y + 9)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215059 + 1.214380I
a = 0.002300 + 1.089580I
b = 0.368793 0.969057I
1.13659 3.22673I 0.94474 + 3.62956I
u = 0.215059 + 1.214380I
a = 0.975063 0.588954I
b = 0.192944 + 0.699186I
1.13659 3.22673I 0.94474 + 3.62956I
u = 0.215059 1.214380I
a = 0.002300 1.089580I
b = 0.368793 + 0.969057I
1.13659 + 3.22673I 0.94474 3.62956I
u = 0.215059 1.214380I
a = 0.975063 + 0.588954I
b = 0.192944 0.699186I
1.13659 + 3.22673I 0.94474 3.62956I
u = 0.678984 + 0.355286I
a = 0.373118 + 0.790875I
b = 0.638489 0.301741I
1.40107 + 5.71427I 0.93404 6.05983I
u = 0.678984 + 0.355286I
a = 0.15211 2.42083I
b = 1.01877 + 1.13385I
1.40107 + 5.71427I 0.93404 6.05983I
u = 0.678984 0.355286I
a = 0.373118 0.790875I
b = 0.638489 + 0.301741I
1.40107 5.71427I 0.93404 + 6.05983I
u = 0.678984 0.355286I
a = 0.15211 + 2.42083I
b = 1.01877 1.13385I
1.40107 5.71427I 0.93404 + 6.05983I
u = 0.590027 + 0.406016I
a = 1.118520 0.162715I
b = 1.37030 + 0.82721I
5.71606 1.88569I 6.31669 + 3.99357I
u = 0.590027 + 0.406016I
a = 0.41536 + 2.69331I
b = 1.17195 0.92293I
5.71606 1.88569I 6.31669 + 3.99357I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.590027 0.406016I
a = 1.118520 + 0.162715I
b = 1.37030 0.82721I
5.71606 + 1.88569I 6.31669 3.99357I
u = 0.590027 0.406016I
a = 0.41536 2.69331I
b = 1.17195 + 0.92293I
5.71606 + 1.88569I 6.31669 3.99357I
u = 0.482433 + 0.528989I
a = 1.058110 + 0.209584I
b = 1.011890 0.890970I
2.16110 1.78695I 2.76057 0.02251I
u = 0.482433 + 0.528989I
a = 0.397687 + 0.345143I
b = 0.453860 + 0.202125I
2.16110 1.78695I 2.76057 0.02251I
u = 0.482433 0.528989I
a = 1.058110 0.209584I
b = 1.011890 + 0.890970I
2.16110 + 1.78695I 2.76057 + 0.02251I
u = 0.482433 0.528989I
a = 0.397687 0.345143I
b = 0.453860 0.202125I
2.16110 + 1.78695I 2.76057 + 0.02251I
u = 0.076050 + 1.298790I
a = 0.407477 0.229334I
b = 1.48337 0.18970I
6.64349 + 1.57187I 6.19122 4.22070I
u = 0.076050 + 1.298790I
a = 0.93361 1.86171I
b = 0.514584 + 0.548281I
6.64349 + 1.57187I 6.19122 4.22070I
u = 0.076050 1.298790I
a = 0.407477 + 0.229334I
b = 1.48337 + 0.18970I
6.64349 1.57187I 6.19122 + 4.22070I
u = 0.076050 1.298790I
a = 0.93361 + 1.86171I
b = 0.514584 0.548281I
6.64349 1.57187I 6.19122 + 4.22070I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.663049
a = 0.75990 + 1.61603I
b = 0.100234 0.793225I
2.54269 4.37200
u = 0.663049
a = 0.75990 1.61603I
b = 0.100234 + 0.793225I
2.54269 4.37200
u = 0.17132 + 1.45278I
a = 0.904962 + 0.528092I
b = 0.509101 0.044463I
8.43501 + 0.55896I 6.48886 + 0.25710I
u = 0.17132 + 1.45278I
a = 0.057144 0.582449I
b = 1.30127 0.81693I
8.43501 + 0.55896I 6.48886 + 0.25710I
u = 0.17132 1.45278I
a = 0.904962 0.528092I
b = 0.509101 + 0.044463I
8.43501 0.55896I 6.48886 0.25710I
u = 0.17132 1.45278I
a = 0.057144 + 0.582449I
b = 1.30127 + 0.81693I
8.43501 0.55896I 6.48886 0.25710I
u = 0.25789 + 1.44398I
a = 0.939728 + 0.593663I
b = 0.760772 0.275153I
7.18011 + 9.13509I 5.01305 5.86478I
u = 0.25789 + 1.44398I
a = 1.26389 1.34691I
b = 1.11257 + 1.23748I
7.18011 + 9.13509I 5.01305 5.86478I
u = 0.25789 1.44398I
a = 0.939728 0.593663I
b = 0.760772 + 0.275153I
7.18011 9.13509I 5.01305 + 5.86478I
u = 0.25789 1.44398I
a = 1.26389 + 1.34691I
b = 1.11257 1.23748I
7.18011 9.13509I 5.01305 + 5.86478I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.22144 + 1.45044I
a = 0.107041 + 0.684128I
b = 1.49645 + 0.92173I
11.67720 4.87394I 9.52680 + 3.60136I
u = 0.22144 + 1.45044I
a = 1.39161 + 1.57282I
b = 1.17047 1.08526I
11.67720 4.87394I 9.52680 + 3.60136I
u = 0.22144 1.45044I
a = 0.107041 0.684128I
b = 1.49645 0.92173I
11.67720 + 4.87394I 9.52680 3.60136I
u = 0.22144 1.45044I
a = 1.39161 1.57282I
b = 1.17047 + 1.08526I
11.67720 + 4.87394I 9.52680 3.60136I
u = 0.382766
a = 1.06482
b = 1.27817
2.66795 3.98000
u = 0.382766
a = 4.59843
b = 0.590880
2.66795 3.98000
14
III. I
u
3
= hb + 1, 2a u, u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
1
=
1
2
u
1
a
4
=
1
2
a
2
=
1
2
u + 1
1
a
8
=
u
u
a
5
=
1
0
a
7
=
0
u
a
10
=
0
u
a
11
=
1
2
u
u 1
a
6
=
1
2
u
1
a
6
=
1
2
u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
(u + 1)
2
c
3
, c
4
, c
7
c
8
u
2
+ 2
c
5
, c
10
(u 1)
2
c
9
u
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
2
c
3
, c
4
, c
7
c
8
(y + 2)
2
c
9
y
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.707107I
b = 1.00000
8.22467 12.0000
u = 1.414210I
a = 0.707107I
b = 1.00000
8.22467 12.0000
18
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
1
=
0
1
a
4
=
1
0
a
2
=
1
1
a
8
=
1
0
a
5
=
1
0
a
7
=
1
0
a
10
=
1
0
a
11
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u 1
c
2
, c
5
, c
10
c
11
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u 1)(u + 1)
2
(u
22
+ u
21
+ ··· + u + 1)(u
36
+ u
35
+ ··· 6u 3)
c
2
, c
11
((u + 1)
3
)(u
22
+ 11u
21
+ ··· + 3u + 1)(u
36
+ 21u
35
+ ··· + 12u + 9)
c
3
, c
4
, c
8
u(u
2
+ 2)(u
18
+ u
17
+ ··· 3u 1)
2
(u
22
3u
21
+ ··· 8u + 2)
c
5
, c
10
((u 1)
2
)(u + 1)(u
22
+ u
21
+ ··· + u + 1)(u
36
+ u
35
+ ··· 6u 3)
c
7
u(u
2
+ 2)(u
18
u
17
+ ··· 13u 5)
2
(u
22
+ 3u
21
+ ··· 16u + 2)
c
9
u
3
(u
18
+ 3u
17
+ ··· + 3u + 3)
2
(u
22
+ 3u
21
+ ··· 64u
2
+ 16)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
((y 1)
3
)(y
22
11y
21
+ ··· 3y + 1)(y
36
21y
35
+ ··· 12y + 9)
c
2
, c
11
((y 1)
3
)(y
22
+ 5y
21
+ ··· + 5y + 1)(y
36
13y
35
+ ··· 1260y + 81)
c
3
, c
4
, c
8
y(y + 2)
2
(y
18
+ 17y
17
+ ··· 7y + 1)
2
(y
22
+ 21y
21
+ ··· + 8y + 4)
c
7
y(y + 2)
2
(y
18
+ 5y
17
+ ··· 39y + 25)
2
(y
22
+ 9y
21
+ ··· 24y + 4)
c
9
y
3
(y
18
+ 13y
17
+ ··· 75y + 9)
2
(y
22
+ 13y
21
+ ··· 2048y + 256)
24