11a
108
(K11a
108
)
A knot diagram
1
Linearized knot diagam
5 1 9 10 2 11 3 4 8 6 7
Solving Sequence
4,9 1,3
2 8 10 5 7 11 6
c
3
c
2
c
8
c
9
c
4
c
7
c
11
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4u
40
+ 4u
39
+ ··· + 4b + 4, 2u
40
+ 4u
39
+ ··· + 4a 2, u
41
2u
40
+ ··· 4u + 2i
I
u
2
= h46u
4
a
2
+ 10u
4
a + ··· 33a + 56,
2u
3
a
2
u
4
a 2a
2
u
2
+ 2u
3
a + 3u
4
+ a
3
2a
2
u + u
2
a + u
3
2a
2
+ au + 2u
2
+ 2a + 3u + 1,
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
I
u
3
= hu
3
+ b + u 1, u
3
2u
2
+ 2a 4, u
4
+ 2u
2
+ 2i
I
v
1
= ha, b + 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−4u
40
+4u
39
+· · ·+4b+4, 2u
40
+4u
39
+· · ·+4a2, u
41
2u
40
+· · ·4u+2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
1
2
u
40
u
39
+ ··· +
1
2
u +
1
2
u
40
u
39
+ ··· +
1
2
u 1
a
3
=
1
u
2
a
2
=
1
4
u
33
2u
31
+ ···
1
2
u
3
+ 1
1
4
u
35
+
9
4
u
33
+ ···
3
2
u
2
1
2
u
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
5
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
7
=
u
3
u
5
+ u
3
+ u
a
11
=
1
4
u
36
9
4
u
34
+ ···
1
2
u +
1
2
1
4
u
36
5
2
u
34
+ ···
1
2
u
2
u
a
6
=
1
4
u
36
9
4
u
34
+ ···
1
2
u +
1
2
1
4
u
38
+
5
2
u
36
+ ··· + u
3
+ u
a
6
=
1
4
u
36
9
4
u
34
+ ···
1
2
u +
1
2
1
4
u
38
+
5
2
u
36
+ ··· + u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
40
4u
39
+ 22u
38
40u
37
+ 114u
36
196u
35
+ 364u
34
604u
33
+ 786u
32
1280u
31
+
1188u
30
1918u
29
+ 1256u
28
1996u
27
+ 904u
26
1290u
25
+ 434u
24
232u
23
+
184u
22
+ 468u
21
+ 136u
20
+ 520u
19
+ 84u
18
+ 194u
17
+ 4u
16
120u
15
4u
14
258u
13
+
52u
12
234u
11
+ 84u
10
128u
9
+ 90u
8
30u
7
+ 64u
6
+ 2u
5
+ 24u
4
10u
3
4u
2
2u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
41
+ 2u
40
+ ··· + 5u 1
c
2
u
41
+ 14u
40
+ ··· + u + 1
c
3
, c
8
u
41
+ 2u
40
+ ··· 4u 2
c
4
, c
7
u
41
2u
40
+ ··· 24u 16
c
6
, c
10
, c
11
u
41
2u
40
+ ··· 7u 1
c
9
u
41
22u
40
+ ··· + 8u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
41
14y
40
+ ··· + y 1
c
2
y
41
+ 34y
40
+ ··· + 737y 1
c
3
, c
8
y
41
+ 22y
40
+ ··· + 8y 4
c
4
, c
7
y
41
34y
40
+ ··· 16448y 256
c
6
, c
10
, c
11
y
41
46y
40
+ ··· 47y 1
c
9
y
41
6y
40
+ ··· + 160y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.503278 + 0.876227I
a = 1.01864 1.35377I
b = 0.184951 0.697202I
1.85795 + 5.19311I 2.06190 8.35313I
u = 0.503278 0.876227I
a = 1.01864 + 1.35377I
b = 0.184951 + 0.697202I
1.85795 5.19311I 2.06190 + 8.35313I
u = 0.595879 + 0.924278I
a = 1.261860 + 0.541147I
b = 0.683532 + 0.365288I
3.43135 8.38206I 3.46275 + 8.23571I
u = 0.595879 0.924278I
a = 1.261860 0.541147I
b = 0.683532 0.365288I
3.43135 + 8.38206I 3.46275 8.23571I
u = 0.012198 + 0.896132I
a = 1.24032 + 1.28683I
b = 0.765320 + 0.507138I
1.35320 1.46651I 7.22861 + 4.90542I
u = 0.012198 0.896132I
a = 1.24032 1.28683I
b = 0.765320 0.507138I
1.35320 + 1.46651I 7.22861 4.90542I
u = 0.662080 + 0.589897I
a = 0.314575 + 0.870590I
b = 0.143067 + 0.847335I
2.46953 + 3.52956I 2.12209 2.66433I
u = 0.662080 0.589897I
a = 0.314575 0.870590I
b = 0.143067 0.847335I
2.46953 3.52956I 2.12209 + 2.66433I
u = 0.860560 + 0.141859I
a = 0.542033 + 0.556076I
b = 0.51707 2.21472I
7.79923 9.18843I 3.80065 + 5.17633I
u = 0.860560 0.141859I
a = 0.542033 0.556076I
b = 0.51707 + 2.21472I
7.79923 + 9.18843I 3.80065 5.17633I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.861859 + 0.085768I
a = 0.673275 + 0.352479I
b = 0.26299 1.41656I
9.69240 + 2.90753I 6.01430 0.84016I
u = 0.861859 0.085768I
a = 0.673275 0.352479I
b = 0.26299 + 1.41656I
9.69240 2.90753I 6.01430 + 0.84016I
u = 0.053677 + 1.146820I
a = 0.37845 1.62203I
b = 0.571996 0.725064I
8.20281 + 2.94250I 9.69079 2.88880I
u = 0.053677 1.146820I
a = 0.37845 + 1.62203I
b = 0.571996 + 0.725064I
8.20281 2.94250I 9.69079 + 2.88880I
u = 0.547888 + 1.013950I
a = 1.410510 0.051509I
b = 1.097590 + 0.770395I
4.68586 + 3.37196I 6.53621 2.75945I
u = 0.547888 1.013950I
a = 1.410510 + 0.051509I
b = 1.097590 0.770395I
4.68586 3.37196I 6.53621 + 2.75945I
u = 0.423966 + 1.085320I
a = 0.889067 0.156517I
b = 1.100080 + 0.649290I
4.21251 + 3.60145I 9.92786 4.45844I
u = 0.423966 1.085320I
a = 0.889067 + 0.156517I
b = 1.100080 0.649290I
4.21251 3.60145I 9.92786 + 4.45844I
u = 0.683105 + 0.455196I
a = 0.331321 + 0.649818I
b = 0.675612 + 0.983763I
3.06237 + 1.36624I 3.26071 2.82351I
u = 0.683105 0.455196I
a = 0.331321 0.649818I
b = 0.675612 0.983763I
3.06237 1.36624I 3.26071 + 2.82351I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.800093 + 0.101020I
a = 0.166855 0.995960I
b = 0.60540 + 1.90379I
1.51266 + 5.04411I 1.12155 5.34007I
u = 0.800093 0.101020I
a = 0.166855 + 0.995960I
b = 0.60540 1.90379I
1.51266 5.04411I 1.12155 + 5.34007I
u = 0.500958 + 0.624025I
a = 0.051668 0.512607I
b = 0.589638 0.765864I
2.57302 1.04199I 5.23599 + 1.20683I
u = 0.500958 0.624025I
a = 0.051668 + 0.512607I
b = 0.589638 + 0.765864I
2.57302 + 1.04199I 5.23599 1.20683I
u = 0.465698 + 1.112630I
a = 1.14618 + 1.00180I
b = 1.113240 0.021535I
0.77731 3.72567I 1.87519 + 3.76789I
u = 0.465698 1.112630I
a = 1.14618 1.00180I
b = 1.113240 + 0.021535I
0.77731 + 3.72567I 1.87519 3.76789I
u = 0.405488 + 1.211450I
a = 1.31179 1.91130I
b = 0.56018 2.51021I
5.40261 + 0.90249I 5.70583 2.02309I
u = 0.405488 1.211450I
a = 1.31179 + 1.91130I
b = 0.56018 + 2.51021I
5.40261 0.90249I 5.70583 + 2.02309I
u = 0.497123 + 1.201300I
a = 0.84019 + 2.50910I
b = 1.40879 + 2.64017I
4.75069 9.79224I 4.22259 + 8.17334I
u = 0.497123 1.201300I
a = 0.84019 2.50910I
b = 1.40879 2.64017I
4.75069 + 9.79224I 4.22259 8.17334I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.373001 + 1.250030I
a = 1.33745 + 1.92758I
b = 0.56709 + 2.23140I
12.10740 4.99417I 8.18458 + 2.23571I
u = 0.373001 1.250030I
a = 1.33745 1.92758I
b = 0.56709 2.23140I
12.10740 + 4.99417I 8.18458 2.23571I
u = 0.410502 + 1.250480I
a = 0.850292 + 1.066310I
b = 0.602301 + 1.153840I
13.77940 1.51388I 9.75388 + 2.25000I
u = 0.410502 1.250480I
a = 0.850292 1.066310I
b = 0.602301 1.153840I
13.77940 + 1.51388I 9.75388 2.25000I
u = 0.526084 + 1.215280I
a = 1.27954 2.55127I
b = 0.88088 2.96625I
11.0125 + 14.2368I 6.63638 8.24449I
u = 0.526084 1.215280I
a = 1.27954 + 2.55127I
b = 0.88088 + 2.96625I
11.0125 14.2368I 6.63638 + 8.24449I
u = 0.502214 + 1.228010I
a = 0.78343 1.80145I
b = 0.41247 2.19576I
13.1184 7.8365I 8.99343 + 4.06275I
u = 0.502214 1.228010I
a = 0.78343 + 1.80145I
b = 0.41247 + 2.19576I
13.1184 + 7.8365I 8.99343 4.06275I
u = 0.526691 + 0.260209I
a = 0.059135 0.159552I
b = 0.942509 0.266856I
1.66678 0.31810I 5.86833 + 0.81571I
u = 0.526691 0.260209I
a = 0.059135 + 0.159552I
b = 0.942509 + 0.266856I
1.66678 + 0.31810I 5.86833 0.81571I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.534614
a = 1.27118
b = 0.415627
1.42690 6.75840
9
II. I
u
2
= h46u
4
a
2
+ 10u
4
a + · · · 33a + 56, u
4
a + 3u
4
+ · · · + 2a + 1, u
5
+
u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
a
0.630137a
2
u
4
0.136986au
4
+ ··· + 0.452055a 0.767123
a
3
=
1
u
2
a
2
=
0.328767a
2
u
4
0.232877au
4
+ ··· + 0.0684932a + 1.09589
0.739726a
2
u
4
+ 0.273973au
4
+ ··· + 1.09589a 0.465753
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
5
=
u
3
u
4
u
3
u
2
1
a
7
=
u
3
u
4
u
3
u
2
1
a
11
=
0.328767a
2
u
4
0.232877au
4
+ ··· + 0.0684932a + 1.09589
0.739726a
2
u
4
+ 0.273973au
4
+ ··· + 1.09589a 0.465753
a
6
=
0.328767a
2
u
4
0.232877au
4
+ ··· + 0.0684932a + 1.09589
1.21918a
2
u
4
0.821918au
4
+ ··· 1.28767a + 1.39726
a
6
=
0.328767a
2
u
4
0.232877au
4
+ ··· + 0.0684932a + 1.09589
1.21918a
2
u
4
0.821918au
4
+ ··· 1.28767a + 1.39726
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
+ 4u + 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
u
15
5u
13
+ ··· u + 1
c
2
u
15
+ 10u
14
+ ··· u + 1
c
3
, c
8
(u
5
u
4
+ 2u
3
u
2
+ u 1)
3
c
4
, c
7
(u
5
+ u
4
2u
3
u
2
+ u 1)
3
c
9
(u
5
3u
4
+ 4u
3
u
2
u + 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
y
15
10y
14
+ ··· y 1
c
2
y
15
10y
14
+ ··· y 1
c
3
, c
8
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
c
4
, c
7
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
c
9
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.987461 0.368120I
b = 0.550313 0.577492I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.339110 + 0.822375I
a = 0.519621 0.051702I
b = 1.65077 + 0.68097I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.339110 + 0.822375I
a = 0.21028 + 2.63515I
b = 0.480628 + 0.996348I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.339110 0.822375I
a = 0.987461 + 0.368120I
b = 0.550313 + 0.577492I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 0.822375I
a = 0.519621 + 0.051702I
b = 1.65077 0.68097I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.339110 0.822375I
a = 0.21028 2.63515I
b = 0.480628 0.996348I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.766826
a = 0.584967 + 0.856589I
b = 0.40069 1.38845I
2.40108 3.48110
u = 0.766826
a = 0.584967 0.856589I
b = 0.40069 + 1.38845I
2.40108 3.48110
u = 0.766826
a = 0.429363
b = 1.63410
2.40108 3.48110
u = 0.455697 + 1.200150I
a = 0.33284 1.93140I
b = 1.58159 1.67595I
5.87256 + 4.40083I 6.74431 3.49859I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.455697 + 1.200150I
a = 1.19834 + 1.66866I
b = 0.22205 + 2.42247I
5.87256 + 4.40083I 6.74431 3.49859I
u = 0.455697 + 1.200150I
a = 1.50666 1.48655I
b = 1.47803 0.30819I
5.87256 + 4.40083I 6.74431 3.49859I
u = 0.455697 1.200150I
a = 0.33284 + 1.93140I
b = 1.58159 + 1.67595I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 1.200150I
a = 1.19834 1.66866I
b = 0.22205 2.42247I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.455697 1.200150I
a = 1.50666 + 1.48655I
b = 1.47803 + 0.30819I
5.87256 4.40083I 6.74431 + 3.49859I
14
III. I
u
3
= hu
3
+ b + u 1, u
3
2u
2
+ 2a 4, u
4
+ 2u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
1
2
u
3
+ u
2
+ 2
u
3
u + 1
a
3
=
1
u
2
a
2
=
1
2
u
3
+ u
2
+ 3
u
3
u
2
u + 1
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
5
=
1
u
2
a
7
=
u
3
u
3
u
a
11
=
1
2
u
3
+ u
2
+ 2
1
a
6
=
1
2
u
3
+ u
2
+ 2
u
3
u + 1
a
6
=
1
2
u
3
+ u
2
+ 2
u
3
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
c
11
(u + 1)
4
c
3
, c
8
u
4
+ 2u
2
+ 2
c
4
, c
7
u
4
2u
2
+ 2
c
5
, c
6
(u 1)
4
c
9
(u
2
2u + 2)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
4
c
3
, c
8
(y
2
+ 2y + 2)
2
c
4
, c
7
(y
2
2y + 2)
2
c
9
(y
2
+ 4)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.455090 + 1.098680I
a = 1.77689 + 1.32180I
b = 2.09868 0.45509I
2.46740 3.66386I 4.00000 + 4.00000I
u = 0.455090 1.098680I
a = 1.77689 1.32180I
b = 2.09868 + 0.45509I
2.46740 + 3.66386I 4.00000 4.00000I
u = 0.455090 + 1.098680I
a = 0.223113 0.678203I
b = 0.098684 0.455090I
2.46740 + 3.66386I 4.00000 4.00000I
u = 0.455090 1.098680I
a = 0.223113 + 0.678203I
b = 0.098684 + 0.455090I
2.46740 3.66386I 4.00000 + 4.00000I
18
IV. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
1
=
0
1
a
3
=
1
0
a
2
=
1
1
a
8
=
1
0
a
10
=
1
0
a
5
=
1
0
a
7
=
1
0
a
11
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
5
, c
6
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
4
(u
15
5u
13
+ ··· u + 1)(u
41
+ 2u
40
+ ··· + 5u 1)
c
2
((u + 1)
5
)(u
15
+ 10u
14
+ ··· u + 1)(u
41
+ 14u
40
+ ··· + u + 1)
c
3
, c
8
u(u
4
+ 2u
2
+ 2)(u
5
u
4
+ ··· + u 1)
3
(u
41
+ 2u
40
+ ··· 4u 2)
c
4
, c
7
u(u
4
2u
2
+ 2)(u
5
+ u
4
2u
3
u
2
+ u 1)
3
· (u
41
2u
40
+ ··· 24u 16)
c
5
((u 1)
4
)(u + 1)(u
15
5u
13
+ ··· u + 1)(u
41
+ 2u
40
+ ··· + 5u 1)
c
6
((u 1)
4
)(u + 1)(u
15
5u
13
+ ··· u + 1)(u
41
2u
40
+ ··· 7u 1)
c
9
u(u
2
2u + 2)
2
(u
5
3u
4
+ 4u
3
u
2
u + 1)
3
· (u
41
22u
40
+ ··· + 8u + 4)
c
10
, c
11
(u 1)(u + 1)
4
(u
15
5u
13
+ ··· u + 1)(u
41
2u
40
+ ··· 7u 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
5
)(y
15
10y
14
+ ··· y 1)(y
41
14y
40
+ ··· + y 1)
c
2
((y 1)
5
)(y
15
10y
14
+ ··· y 1)(y
41
+ 34y
40
+ ··· + 737y 1)
c
3
, c
8
y(y
2
+ 2y + 2)
2
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
· (y
41
+ 22y
40
+ ··· + 8y 4)
c
4
, c
7
y(y
2
2y + 2)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
41
34y
40
+ ··· 16448y 256)
c
6
, c
10
, c
11
((y 1)
5
)(y
15
10y
14
+ ··· y 1)(y
41
46y
40
+ ··· 47y 1)
c
9
y(y
2
+ 4)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
· (y
41
6y
40
+ ··· + 160y 16)
24