11a
109
(K11a
109
)
A knot diagram
1
Linearized knot diagam
5 1 10 9 2 11 3 4 8 6 7
Solving Sequence
4,9 2,5
6 1 8 10 3 7 11
c
4
c
5
c
1
c
8
c
9
c
3
c
7
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
45
11u
43
+ ··· + 4b 2u, u
45
10u
43
+ ··· + 4a 4, u
47
+ 2u
46
+ ··· + 4u + 2i
I
u
2
= h110u
5
a
2
28u
5
a + ··· 169a + 180,
2u
4
a
2
u
5
a + 2u
3
a
2
+ 4u
4
a + u
5
+ 2a
2
u
2
+ 2u
3
a + u
4
+ a
3
2a
2
u 5u
2
a u
3
+ 4au + 2u
2
+ a 1,
u
6
u
5
u
4
+ 2u
3
u + 1i
I
u
3
= hu
3
+ u
2
+ b u + 1, u
3
2u
2
+ 2a + 6, u
4
2u
2
+ 2i
I
v
1
= ha, b + 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
45
11u
43
+· · ·+4b 2u, u
45
10u
43
+· · ·+4a 4, u
47
+2u
46
+· · ·+4u +2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
4
u
45
+
5
2
u
43
+ ···
1
2
u
3
+ 1
1
4
u
45
+
11
4
u
43
+ ··· +
1
2
u
2
+
1
2
u
a
5
=
1
u
2
a
6
=
1
2
u
46
+
11
2
u
44
+ ···
1
2
u +
1
2
u
46
u
45
+ ···
7
2
u 1
a
1
=
1
2
u
46
3
4
u
45
+ ···
1
2
u +
1
2
3
4
u
45
+
33
4
u
43
+ ···
1
2
u 1
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
3
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
a
7
=
u
11
+ 2u
9
2u
7
+ u
3
u
11
+ 3u
9
4u
7
+ 3u
5
u
3
+ u
a
11
=
1
4
u
34
+ 2u
32
+ ··· +
1
2
u +
1
2
1
4
u
36
+ 2u
34
+ ··· +
1
2
u
2
+ u
a
11
=
1
4
u
34
+ 2u
32
+ ··· +
1
2
u +
1
2
1
4
u
36
+ 2u
34
+ ··· +
1
2
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
46
+ 22u
44
+ ··· 4u
2
+ 2u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
47
+ 2u
46
+ ··· 5u + 5
c
2
u
47
+ 18u
46
+ ··· + 445u + 25
c
3
u
47
+ 6u
46
+ ··· + 736u + 128
c
4
, c
8
u
47
+ 2u
46
+ ··· + 4u + 2
c
6
, c
10
, c
11
u
47
2u
46
+ ··· + 23u + 5
c
7
u
47
2u
46
+ ··· 3652u + 3866
c
9
u
47
+ 22u
46
+ ··· + 8u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
47
18y
46
+ ··· + 445y 25
c
2
y
47
+ 30y
46
+ ··· 49175y 625
c
3
y
47
+ 10y
46
+ ··· 154624y 16384
c
4
, c
8
y
47
22y
46
+ ··· + 8y 4
c
6
, c
10
, c
11
y
47
50y
46
+ ··· 211y 25
c
7
y
47
14y
46
+ ··· + 245188856y 14945956
c
9
y
47
+ 6y
46
+ ··· 96y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.637057 + 0.718687I
a = 0.721070 + 1.203990I
b = 0.0489452 0.0612350I
7.88170 7.13370I 4.69775 + 5.86187I
u = 0.637057 0.718687I
a = 0.721070 1.203990I
b = 0.0489452 + 0.0612350I
7.88170 + 7.13370I 4.69775 5.86187I
u = 0.571455 + 0.734273I
a = 0.246152 + 0.401075I
b = 0.880555 + 0.625675I
9.33252 + 1.08584I 6.61100 0.78668I
u = 0.571455 0.734273I
a = 0.246152 0.401075I
b = 0.880555 0.625675I
9.33252 1.08584I 6.61100 + 0.78668I
u = 1.006040 + 0.471862I
a = 0.029772 0.657677I
b = 0.257242 0.932477I
0.11745 4.26570I 1.86221 + 7.53589I
u = 1.006040 0.471862I
a = 0.029772 + 0.657677I
b = 0.257242 + 0.932477I
0.11745 + 4.26570I 1.86221 7.53589I
u = 0.406762 + 0.786472I
a = 0.118369 0.344190I
b = 0.192922 0.870022I
8.45114 3.90837I 6.00297 + 1.23296I
u = 0.406762 0.786472I
a = 0.118369 + 0.344190I
b = 0.192922 + 0.870022I
8.45114 + 3.90837I 6.00297 1.23296I
u = 0.359333 + 0.808292I
a = 0.860558 0.927434I
b = 2.13804 0.70182I
6.36842 + 9.89029I 3.34606 5.56719I
u = 0.359333 0.808292I
a = 0.860558 + 0.927434I
b = 2.13804 + 0.70182I
6.36842 9.89029I 3.34606 + 5.56719I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.099960 + 0.219524I
a = 2.12278 + 0.02040I
b = 1.40098 + 1.56081I
4.03460 + 3.27231I 6.93849 3.87386I
u = 1.099960 0.219524I
a = 2.12278 0.02040I
b = 1.40098 1.56081I
4.03460 3.27231I 6.93849 + 3.87386I
u = 1.117490 + 0.132112I
a = 0.871978 + 0.879966I
b = 0.365572 + 0.512413I
3.39185 + 1.64022I 0.179783 0.219910I
u = 1.117490 0.132112I
a = 0.871978 0.879966I
b = 0.365572 0.512413I
3.39185 1.64022I 0.179783 + 0.219910I
u = 0.998163 + 0.550991I
a = 0.315047 + 0.102429I
b = 0.898334 0.169658I
0.241182 + 1.057240I 0.289576 + 0.557042I
u = 0.998163 0.550991I
a = 0.315047 0.102429I
b = 0.898334 + 0.169658I
0.241182 1.057240I 0.289576 0.557042I
u = 0.568933 + 0.644352I
a = 0.15650 1.49843I
b = 0.187633 0.331112I
1.50796 + 3.62695I 2.13655 6.26888I
u = 0.568933 0.644352I
a = 0.15650 + 1.49843I
b = 0.187633 + 0.331112I
1.50796 3.62695I 2.13655 + 6.26888I
u = 0.951297 + 0.631945I
a = 0.093242 0.484467I
b = 0.390493 + 0.618210I
6.94963 + 1.98085I 3.48623 0.28252I
u = 0.951297 0.631945I
a = 0.093242 + 0.484467I
b = 0.390493 0.618210I
6.94963 1.98085I 3.48623 + 0.28252I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.108720 + 0.363808I
a = 2.65417 + 0.58730I
b = 2.29701 1.20468I
5.47077 3.68113I 9.62046 + 4.56447I
u = 1.108720 0.363808I
a = 2.65417 0.58730I
b = 2.29701 + 1.20468I
5.47077 + 3.68113I 9.62046 4.56447I
u = 0.365235 + 0.745543I
a = 0.561966 + 1.294290I
b = 1.96786 + 0.35399I
0.49152 5.74739I 0.29552 + 5.57964I
u = 0.365235 0.745543I
a = 0.561966 1.294290I
b = 1.96786 0.35399I
0.49152 + 5.74739I 0.29552 5.57964I
u = 1.165410 + 0.187983I
a = 2.28007 + 0.42466I
b = 2.08406 1.07708I
1.38638 7.13549I 2.46560 + 4.47635I
u = 1.165410 0.187983I
a = 2.28007 0.42466I
b = 2.08406 + 1.07708I
1.38638 + 7.13549I 2.46560 4.47635I
u = 1.005960 + 0.623496I
a = 1.24908 + 0.75581I
b = 1.063390 0.194010I
8.04432 + 4.08182I 4.48123 4.68553I
u = 1.005960 0.623496I
a = 1.24908 0.75581I
b = 1.063390 + 0.194010I
8.04432 4.08182I 4.48123 + 4.68553I
u = 1.111110 + 0.494738I
a = 1.83321 1.25072I
b = 2.10148 + 0.95562I
4.58829 + 3.84650I 8.76666 3.56046I
u = 1.111110 0.494738I
a = 1.83321 + 1.25072I
b = 2.10148 0.95562I
4.58829 3.84650I 8.76666 + 3.56046I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.176480 + 0.396630I
a = 2.40697 0.03813I
b = 2.05844 + 1.68830I
1.23516 + 6.21145I 1.74487 7.02826I
u = 1.176480 0.396630I
a = 2.40697 + 0.03813I
b = 2.05844 1.68830I
1.23516 6.21145I 1.74487 + 7.02826I
u = 0.066156 + 0.753461I
a = 0.967191 + 0.143999I
b = 1.41080 0.53958I
2.42833 2.22486I 2.96572 + 3.27842I
u = 0.066156 0.753461I
a = 0.967191 0.143999I
b = 1.41080 + 0.53958I
2.42833 + 2.22486I 2.96572 3.27842I
u = 1.111590 + 0.573138I
a = 2.03891 + 1.83979I
b = 3.12984 0.32101I
1.69804 + 10.75150I 2.97142 9.27459I
u = 1.111590 0.573138I
a = 2.03891 1.83979I
b = 3.12984 + 0.32101I
1.69804 10.75150I 2.97142 + 9.27459I
u = 1.168440 + 0.464509I
a = 1.31459 + 1.24173I
b = 2.05354 0.47643I
0.77532 2.18171I 0
u = 1.168440 0.464509I
a = 1.31459 1.24173I
b = 2.05354 + 0.47643I
0.77532 + 2.18171I 0
u = 1.108280 + 0.598698I
a = 0.816787 + 0.770371I
b = 0.110572 + 0.781750I
6.36874 + 9.11603I 3.03425 5.54417I
u = 1.108280 0.598698I
a = 0.816787 0.770371I
b = 0.110572 0.781750I
6.36874 9.11603I 3.03425 + 5.54417I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.132790 + 0.591464I
a = 2.36607 1.55769I
b = 3.12191 + 1.03804I
4.0697 15.1191I 0. + 9.40367I
u = 1.132790 0.591464I
a = 2.36607 + 1.55769I
b = 3.12191 1.03804I
4.0697 + 15.1191I 0. 9.40367I
u = 0.664931
a = 1.02381
b = 0.379109
1.34703 7.25790
u = 0.448712 + 0.454594I
a = 1.225200 0.260236I
b = 0.412150 + 0.326959I
1.43130 + 0.33753I 6.95713 1.01845I
u = 0.448712 0.454594I
a = 1.225200 + 0.260236I
b = 0.412150 0.326959I
1.43130 0.33753I 6.95713 + 1.01845I
u = 0.174154 + 0.607070I
a = 1.020160 0.035294I
b = 1.365630 + 0.008684I
2.04844 + 0.43724I 5.38341 0.85631I
u = 0.174154 0.607070I
a = 1.020160 + 0.035294I
b = 1.365630 0.008684I
2.04844 0.43724I 5.38341 + 0.85631I
9
II. I
u
2
= h110u
5
a
2
28u
5
a + · · · 169a + 180, u
5
a + u
5
+ · · · + a 1, u
6
u
5
u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
a
0.607735a
2
u
5
+ 0.154696au
5
+ ··· + 0.933702a 0.994475
a
5
=
1
u
2
a
6
=
0.232044a
2
u
5
0.359116au
5
+ ··· + 1.01105a + 0.165746
0.243094a
2
u
5
+ 0.861878au
5
+ ··· 1.22652a + 1.60221
a
1
=
0.607735a
2
u
5
+ 0.154696au
5
+ ··· + 1.93370a 0.994475
1.02762a
2
u
5
+ 0.552486au
5
+ ··· 0.0939227a 0.408840
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
3
=
u
5
2u
3
+ u
u
5
u
4
2u
3
+ u
2
+ u 1
a
7
=
1
u
2
a
11
=
a
0.607735a
2
u
5
+ 0.154696au
5
+ ··· + 0.933702a 0.994475
a
11
=
a
0.607735a
2
u
5
+ 0.154696au
5
+ ··· + 0.933702a 0.994475
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
2
+ 4u + 2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
u
18
6u
16
+ ··· + u + 1
c
2
u
18
+ 12u
17
+ ··· + u + 1
c
3
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
3
c
4
, c
8
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
c
9
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
y
18
12y
17
+ ··· y + 1
c
2
y
18
12y
17
+ ··· + 7y + 1
c
3
, c
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
c
4
, c
7
, c
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.348652 0.303516I
b = 0.0836886 + 0.0822976I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 1.54157 0.67011I
b = 0.02798 1.89773I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 3.26061 1.15289I
b = 2.46071 + 0.67711I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 0.295542I
a = 0.348652 + 0.303516I
b = 0.0836886 0.0822976I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 1.54157 + 0.67011I
b = 0.02798 + 1.89773I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 3.26061 + 1.15289I
b = 2.46071 0.67711I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 + 0.664531I
a = 0.466201 + 0.792945I
b = 0.025081 + 0.674941I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 1.083770 0.074988I
b = 1.56679 + 0.56745I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.285996 1.259370I
b = 1.42596 0.05764I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 0.664531I
a = 0.466201 0.792945I
b = 0.025081 0.674941I
1.89061 0.92430I 3.71672 + 0.79423I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 1.083770 + 0.074988I
b = 1.56679 0.56745I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 0.664531I
a = 0.285996 + 1.259370I
b = 1.42596 + 0.05764I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 0.789928 0.420050I
b = 0.640192 0.601752I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 1.29540 1.82419I
b = 2.40293 0.55520I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 1.97105 + 1.48173I
b = 2.08041 1.24333I
5.69302I 0. + 5.51057I
u = 1.073950 0.558752I
a = 0.789928 + 0.420050I
b = 0.640192 + 0.601752I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 1.29540 + 1.82419I
b = 2.40293 + 0.55520I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 1.97105 1.48173I
b = 2.08041 + 1.24333I
5.69302I 0. 5.51057I
14
III. I
u
3
= hu
3
+ u
2
+ b u + 1, u
3
2u
2
+ 2a + 6, u
4
2u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
2
u
3
+ u
2
3
u
3
u
2
+ u 1
a
5
=
1
u
2
a
6
=
1
2
u
3
+ u
2
2
u
3
+ u 1
a
1
=
1
2
u
3
+ u
2
2
u
3
+ u 1
a
8
=
u
u
a
10
=
u
3
u
3
+ u
a
3
=
1
u
2
a
7
=
u
3
u
3
u
a
11
=
3
2
u
3
+ u
2
2
2u
3
+ 2u 1
a
11
=
3
2
u
3
+ u
2
2
2u
3
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
c
11
(u + 1)
4
c
3
, c
7
u
4
+ 2u
2
+ 2
c
4
, c
8
u
4
2u
2
+ 2
c
5
, c
6
(u 1)
4
c
9
(u
2
+ 2u + 2)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
4
c
3
, c
7
(y
2
+ 2y + 2)
2
c
4
, c
8
(y
2
2y + 2)
2
c
9
(y
2
+ 4)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 2.32180 + 0.22311I
b = 1.54491 2.09868I
2.46740 3.66386I 4.00000 + 4.00000I
u = 1.098680 0.455090I
a = 2.32180 0.22311I
b = 1.54491 + 2.09868I
2.46740 + 3.66386I 4.00000 4.00000I
u = 1.098680 + 0.455090I
a = 1.67820 1.77689I
b = 2.45509 0.09868I
2.46740 + 3.66386I 4.00000 4.00000I
u = 1.098680 0.455090I
a = 1.67820 + 1.77689I
b = 2.45509 + 0.09868I
2.46740 3.66386I 4.00000 + 4.00000I
18
IV. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
1
=
1
1
a
8
=
1
0
a
10
=
1
0
a
3
=
1
0
a
7
=
1
0
a
11
=
0
1
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
5
, c
6
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
4
(u
18
6u
16
+ ··· + u + 1)(u
47
+ 2u
46
+ ··· 5u + 5)
c
2
((u + 1)
5
)(u
18
+ 12u
17
+ ··· + u + 1)(u
47
+ 18u
46
+ ··· + 445u + 25)
c
3
u(u
4
+ 2u
2
+ 2)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
3
· (u
47
+ 6u
46
+ ··· + 736u + 128)
c
4
, c
8
u(u
4
2u
2
+ 2)(u
6
u
5
+ ··· u + 1)
3
(u
47
+ 2u
46
+ ··· + 4u + 2)
c
5
((u 1)
4
)(u + 1)(u
18
6u
16
+ ··· + u + 1)(u
47
+ 2u
46
+ ··· 5u + 5)
c
6
((u 1)
4
)(u + 1)(u
18
6u
16
+ ··· + u + 1)(u
47
2u
46
+ ··· + 23u + 5)
c
7
u(u
4
+ 2u
2
+ 2)(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
· (u
47
2u
46
+ ··· 3652u + 3866)
c
9
u(u
2
+ 2u + 2)
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
· (u
47
+ 22u
46
+ ··· + 8u + 4)
c
10
, c
11
(u 1)(u + 1)
4
(u
18
6u
16
+ ··· + u + 1)(u
47
2u
46
+ ··· + 23u + 5)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
5
)(y
18
12y
17
+ ··· y + 1)(y
47
18y
46
+ ··· + 445y 25)
c
2
((y 1)
5
)(y
18
12y
17
+ ··· + 7y + 1)
· (y
47
+ 30y
46
+ ··· 49175y 625)
c
3
y(y
2
+ 2y + 2)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
· (y
47
+ 10y
46
+ ··· 154624y 16384)
c
4
, c
8
y(y
2
2y + 2)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
47
22y
46
+ ··· + 8y 4)
c
6
, c
10
, c
11
((y 1)
5
)(y
18
12y
17
+ ··· y + 1)(y
47
50y
46
+ ··· 211y 25)
c
7
y(y
2
+ 2y + 2)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
47
14y
46
+ ··· + 245188856y 14945956)
c
9
y(y
2
+ 4)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
· (y
47
+ 6y
46
+ ··· 96y 16)
24