11a
110
(K11a
110
)
A knot diagram
1
Linearized knot diagam
5 1 9 10 2 11 3 4 8 7 6
Solving Sequence
2,6
5 1 3 11 7 8 10 4 9
c
5
c
1
c
2
c
11
c
6
c
7
c
10
c
4
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
48
u
47
+ ··· 4u
3
+ 1i
* 1 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
48
u
47
+ · · · 4u
3
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
7
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
8
=
u
14
3u
12
+ 4u
10
u
8
+ 1
u
16
+ 4u
14
8u
12
+ 8u
10
4u
8
2u
6
+ 4u
4
2u
2
a
10
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
9
+ 3u
7
3u
5
+ u
a
4
=
u
20
5u
18
+ 11u
16
10u
14
2u
12
+ 13u
10
9u
8
+ 3u
4
u
2
+ 1
u
20
+ 6u
18
16u
16
+ 22u
14
13u
12
4u
10
+ 10u
8
4u
6
u
4
a
9
=
u
39
+ 10u
37
+ ··· + 4u
3
2u
u
41
11u
39
+ ··· + 2u
3
+ u
a
9
=
u
39
+ 10u
37
+ ··· + 4u
3
2u
u
41
11u
39
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
47
56u
45
+ ··· 8u
2
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
48
+ u
47
+ ··· + 4u
3
+ 1
c
2
u
48
+ 27u
47
+ ··· + 28u
3
+ 1
c
3
, c
8
u
48
u
47
+ ··· 2u
4
+ 1
c
4
, c
7
u
48
+ u
47
+ ··· 44u + 17
c
6
, c
10
, c
11
u
48
+ 3u
47
+ ··· + 8u + 1
c
9
u
48
25u
47
+ ··· 4u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
48
27y
47
+ ··· 28y
3
+ 1
c
2
y
48
11y
47
+ ··· + 308y
2
+ 1
c
3
, c
8
y
48
+ 25y
47
+ ··· 4y
2
+ 1
c
4
, c
7
y
48
31y
47
+ ··· + 2620y + 289
c
6
, c
10
, c
11
y
48
+ 49y
47
+ ··· + 56y + 1
c
9
y
48
3y
47
+ ··· 8y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.958219 + 0.143307I
1.66920 0.31218I 6.04929 + 0.55460I
u = 0.958219 0.143307I
1.66920 + 0.31218I 6.04929 0.55460I
u = 0.914661 + 0.504015I
4.41403 0.70127I 5.15173 + 2.65109I
u = 0.914661 0.504015I
4.41403 + 0.70127I 5.15173 2.65109I
u = 1.046740 + 0.068635I
0.77690 3.72476I 1.95300 + 3.66807I
u = 1.046740 0.068635I
0.77690 + 3.72476I 1.95300 3.66807I
u = 1.011960 + 0.286206I
2.55221 0.92643I 6.15695 + 0.73591I
u = 1.011960 0.286206I
2.55221 + 0.92643I 6.15695 0.73591I
u = 0.950614 + 0.484261I
0.72805 + 4.58119I 0.34102 6.39238I
u = 0.950614 0.484261I
0.72805 4.58119I 0.34102 + 6.39238I
u = 1.021410 + 0.380117I
1.89118 + 4.83513I 2.88338 8.66489I
u = 1.021410 0.380117I
1.89118 4.83513I 2.88338 + 8.66489I
u = 0.963622 + 0.510991I
3.78897 9.13187I 3.52711 + 9.35882I
u = 0.963622 0.510991I
3.78897 + 9.13187I 3.52711 9.35882I
u = 0.080810 + 0.850812I
0.65137 + 8.58815I 2.17259 5.82135I
u = 0.080810 0.850812I
0.65137 8.58815I 2.17259 + 5.82135I
u = 0.013057 + 0.852192I
5.99169 2.35954I 2.55512 + 3.34973I
u = 0.013057 0.852192I
5.99169 + 2.35954I 2.55512 3.34973I
u = 0.065516 + 0.840970I
3.41452 3.72023I 1.09842 + 2.42491I
u = 0.065516 0.840970I
3.41452 + 3.72023I 1.09842 2.42491I
u = 0.757474 + 0.366588I
1.28610 + 1.69703I 6.44180 4.95354I
u = 0.757474 0.366588I
1.28610 1.69703I 6.44180 + 4.95354I
u = 0.079356 + 0.807965I
0.763972 + 0.284532I 4.14710 + 0.31000I
u = 0.079356 0.807965I
0.763972 0.284532I 4.14710 0.31000I
u = 0.546437 + 0.541746I
5.44153 3.53716I 7.56794 + 3.98603I
u = 0.546437 0.541746I
5.44153 + 3.53716I 7.56794 3.98603I
u = 0.468200 + 0.569910I
5.17049 + 4.81347I 6.85493 3.77558I
u = 0.468200 0.569910I
5.17049 4.81347I 6.85493 + 3.77558I
u = 1.214630 + 0.420476I
3.06688 + 3.96905I 0
u = 1.214630 0.420476I
3.06688 3.96905I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.484203 + 0.509344I
2.02079 0.49000I 3.99733 + 0.21349I
u = 0.484203 0.509344I
2.02079 + 0.49000I 3.99733 0.21349I
u = 1.209970 + 0.489477I
2.57490 5.01368I 0
u = 1.209970 0.489477I
2.57490 + 5.01368I 0
u = 1.237110 + 0.425873I
7.33658 0.70647I 0
u = 1.237110 0.425873I
7.33658 + 0.70647I 0
u = 1.243170 + 0.416059I
4.66901 4.18367I 0
u = 1.243170 0.416059I
4.66901 + 4.18367I 0
u = 1.224430 + 0.490742I
6.86889 + 8.53427I 0
u = 1.224430 0.490742I
6.86889 8.53427I 0
u = 1.240090 + 0.455194I
9.75907 2.28164I 0
u = 1.240090 0.455194I
9.75907 + 2.28164I 0
u = 1.237470 + 0.468224I
9.66500 + 7.07748I 0
u = 1.237470 0.468224I
9.66500 7.07748I 0
u = 1.225480 + 0.498822I
4.07278 13.47170I 0
u = 1.225480 0.498822I
4.07278 + 13.47170I 0
u = 0.177212 + 0.446834I
0.31404 1.44403I 2.46816 + 4.79849I
u = 0.177212 0.446834I
0.31404 + 1.44403I 2.46816 4.79849I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
48
+ u
47
+ ··· + 4u
3
+ 1
c
2
u
48
+ 27u
47
+ ··· + 28u
3
+ 1
c
3
, c
8
u
48
u
47
+ ··· 2u
4
+ 1
c
4
, c
7
u
48
+ u
47
+ ··· 44u + 17
c
6
, c
10
, c
11
u
48
+ 3u
47
+ ··· + 8u + 1
c
9
u
48
25u
47
+ ··· 4u
2
+ 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
48
27y
47
+ ··· 28y
3
+ 1
c
2
y
48
11y
47
+ ··· + 308y
2
+ 1
c
3
, c
8
y
48
+ 25y
47
+ ··· 4y
2
+ 1
c
4
, c
7
y
48
31y
47
+ ··· + 2620y + 289
c
6
, c
10
, c
11
y
48
+ 49y
47
+ ··· + 56y + 1
c
9
y
48
3y
47
+ ··· 8y + 1
8