11a
111
(K11a
111
)
A knot diagram
1
Linearized knot diagam
5 1 10 9 2 11 3 4 8 7 6
Solving Sequence
2,6
5 1 3 11 7 8 10 4 9
c
5
c
1
c
2
c
11
c
6
c
7
c
10
c
3
c
9
c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
51
u
50
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
51
u
50
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
11
=
u
3
u
3
+ u
a
7
=
u
6
u
4
+ 1
u
6
+ 2u
4
u
2
a
8
=
u
14
3u
12
+ 4u
10
u
8
+ 1
u
16
+ 4u
14
8u
12
+ 8u
10
4u
8
2u
6
+ 4u
4
2u
2
a
10
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
9
+ 3u
7
3u
5
+ u
a
4
=
u
23
6u
21
+ 16u
19
20u
17
+ 4u
15
+ 22u
13
26u
11
+ 6u
9
+ 9u
7
6u
5
u
23
+ 7u
21
+ ··· 2u
3
+ u
a
9
=
u
39
10u
37
+ ··· 7u
7
+ 6u
5
u
41
+ 11u
39
+ ··· 2u
3
+ u
a
9
=
u
39
10u
37
+ ··· 7u
7
+ 6u
5
u
41
+ 11u
39
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
50
+ 60u
48
+ ··· + 4u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
51
+ u
50
+ ··· + 2u + 1
c
2
u
51
+ 29u
50
+ ··· + 2u + 1
c
3
u
51
3u
50
+ ··· + 96u + 77
c
4
, c
8
u
51
u
50
+ ··· u
2
+ 1
c
6
, c
10
, c
11
u
51
+ 3u
50
+ ··· + 38u + 5
c
7
u
51
+ u
50
+ ··· 15u
2
+ 25
c
9
u
51
+ 25u
50
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
51
29y
50
+ ··· + 2y 1
c
2
y
51
13y
50
+ ··· 6y 1
c
3
y
51
+ 19y
50
+ ··· 47918y 5929
c
4
, c
8
y
51
25y
50
+ ··· + 2y 1
c
6
, c
10
, c
11
y
51
+ 55y
50
+ ··· 386y 25
c
7
y
51
+ 7y
50
+ ··· + 750y 625
c
9
y
51
+ 3y
50
+ ··· 6y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.909027 + 0.447242I
0.92869 + 3.49340I 1.60875 7.12715I
u = 0.909027 0.447242I
0.92869 3.49340I 1.60875 + 7.12715I
u = 1.011050 + 0.194989I
2.03194 0.41812I 5.90669 + 0.63067I
u = 1.011050 0.194989I
2.03194 + 0.41812I 5.90669 0.63067I
u = 0.836766 + 0.445768I
0.270561 + 0.850318I 0.462815 + 0.737967I
u = 0.836766 0.445768I
0.270561 0.850318I 0.462815 0.737967I
u = 1.074180 + 0.167529I
4.56731 3.82886I 9.37121 + 3.42519I
u = 1.074180 0.167529I
4.56731 + 3.82886I 9.37121 3.42519I
u = 0.984457 + 0.470779I
0.06113 + 5.08804I 0.46068 6.66773I
u = 0.984457 0.470779I
0.06113 5.08804I 0.46068 + 6.66773I
u = 1.075750 + 0.257928I
5.35579 + 3.64528I 10.51815 4.55101I
u = 1.075750 0.257928I
5.35579 3.64528I 10.51815 + 4.55101I
u = 1.032300 + 0.426575I
4.14364 2.64621I 7.99299 + 4.07353I
u = 1.032300 0.426575I
4.14364 + 2.64621I 7.99299 4.07353I
u = 1.004620 + 0.490092I
2.26947 9.85775I 3.99323 + 10.36767I
u = 1.004620 0.490092I
2.26947 + 9.85775I 3.99323 10.36767I
u = 0.060601 + 0.870392I
7.17725 + 8.76370I 4.62718 5.86372I
u = 0.060601 0.870392I
7.17725 8.76370I 4.62718 + 5.86372I
u = 0.032672 + 0.871748I
8.95121 + 0.59562I 7.09212 + 0.32730I
u = 0.032672 0.871748I
8.95121 0.59562I 7.09212 0.32730I
u = 0.052236 + 0.858648I
4.58264 3.82645I 1.55259 + 2.33220I
u = 0.052236 0.858648I
4.58264 + 3.82645I 1.55259 2.33220I
u = 0.821385
1.34152 6.99070
u = 0.026625 + 0.803166I
2.30918 2.29408I 0.51230 + 3.47946I
u = 0.026625 0.803166I
2.30918 + 2.29408I 0.51230 3.47946I
u = 0.635709 + 0.474037I
0.27984 4.75284I 0.98705 + 6.79611I
u = 0.635709 0.474037I
0.27984 + 4.75284I 0.98705 6.79611I
u = 0.553405 + 0.447723I
1.91457 + 0.33323I 4.99514 0.71543I
u = 0.553405 0.447723I
1.91457 0.33323I 4.99514 + 0.71543I
u = 1.216530 + 0.449635I
5.95571 2.15027I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.216530 0.449635I
5.95571 + 2.15027I 0
u = 1.216530 + 0.469683I
5.81085 + 6.89215I 0
u = 1.216530 0.469683I
5.81085 6.89215I 0
u = 1.247240 + 0.434621I
8.51754 0.71518I 0
u = 1.247240 0.434621I
8.51754 + 0.71518I 0
u = 0.372815 + 0.567071I
0.52649 + 5.64440I 0.46144 5.74990I
u = 0.372815 0.567071I
0.52649 5.64440I 0.46144 + 5.74990I
u = 1.254950 + 0.430017I
11.18690 4.20609I 0
u = 1.254950 0.430017I
11.18690 + 4.20609I 0
u = 1.234600 + 0.488294I
8.12762 + 8.67382I 0
u = 1.234600 0.488294I
8.12762 8.67382I 0
u = 1.253400 + 0.446739I
12.85550 + 4.06120I 0
u = 1.253400 0.446739I
12.85550 4.06120I 0
u = 1.238160 + 0.494203I
10.7190 13.6745I 0
u = 1.238160 0.494203I
10.7190 + 13.6745I 0
u = 1.243900 + 0.481364I
12.60200 5.44150I 0
u = 1.243900 0.481364I
12.60200 + 5.44150I 0
u = 0.402436 + 0.501968I
1.52817 1.07520I 3.83656 + 1.33985I
u = 0.402436 0.501968I
1.52817 + 1.07520I 3.83656 1.33985I
u = 0.194561 + 0.529394I
1.92663 1.10660I 3.70247 + 0.77639I
u = 0.194561 0.529394I
1.92663 + 1.10660I 3.70247 0.77639I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
51
+ u
50
+ ··· + 2u + 1
c
2
u
51
+ 29u
50
+ ··· + 2u + 1
c
3
u
51
3u
50
+ ··· + 96u + 77
c
4
, c
8
u
51
u
50
+ ··· u
2
+ 1
c
6
, c
10
, c
11
u
51
+ 3u
50
+ ··· + 38u + 5
c
7
u
51
+ u
50
+ ··· 15u
2
+ 25
c
9
u
51
+ 25u
50
+ ··· + 2u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
51
29y
50
+ ··· + 2y 1
c
2
y
51
13y
50
+ ··· 6y 1
c
3
y
51
+ 19y
50
+ ··· 47918y 5929
c
4
, c
8
y
51
25y
50
+ ··· + 2y 1
c
6
, c
10
, c
11
y
51
+ 55y
50
+ ··· 386y 25
c
7
y
51
+ 7y
50
+ ··· + 750y 625
c
9
y
51
+ 3y
50
+ ··· 6y 1
8