11a
112
(K11a
112
)
A knot diagram
1
Linearized knot diagam
6 1 8 11 2 10 3 4 5 7 9
Solving Sequence
6,10
7
2,11
1 3 5 4 9 8
c
6
c
10
c
1
c
2
c
5
c
4
c
9
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−8.66742 × 10
142
u
65
1.85341 × 10
143
u
64
+ ··· + 5.23974 × 10
142
b 3.98318 × 10
145
,
2.38832 × 10
145
u
65
5.07173 × 10
145
u
64
+ ··· + 2.04874 × 10
145
a 1.06078 × 10
148
,
u
66
+ 3u
65
+ ··· 698u + 391i
I
u
2
= hu
12
2u
11
5u
10
+ 12u
9
+ 8u
8
29u
7
+ 34u
5
13u
4
18u
3
+ 13u
2
+ b + 3u 3,
u
13
+ 4u
12
+ u
11
22u
10
+ 16u
9
+ 45u
8
58u
7
35u
6
+ 83u
5
6u
4
54u
3
+ 23u
2
+ a + 11u 7,
u
14
2u
13
5u
12
+ 12u
11
+ 8u
10
29u
9
+ 35u
7
14u
6
21u
5
+ 16u
4
+ 5u
3
6u
2
+ 1i
I
u
3
= h−u
5
+ 2u
4
+ u
3
2u
2
+ b u, u
5
+ 2u
4
+ 2u
3
4u
2
+ a u,
u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
7u
5
+ 3u
3
+ 3u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.67 × 10
142
u
65
1.85 × 10
143
u
64
+ · · · + 5.24 × 10
142
b 3.98 ×
10
145
, 2.39 × 10
145
u
65
5.07 × 10
145
u
64
+ · · · + 2.05 × 10
145
a 1.06 ×
10
148
, u
66
+ 3u
65
+ · · · 698u + 391i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
1.16575u
65
+ 2.47554u
64
+ ··· 1496.97u + 517.772
1.65417u
65
+ 3.53723u
64
+ ··· 2227.88u + 760.187
a
11
=
u
u
3
+ u
a
1
=
0.488417u
65
1.06169u
64
+ ··· + 730.907u 242.415
1.65417u
65
+ 3.53723u
64
+ ··· 2227.88u + 760.187
a
3
=
4.63396u
65
9.87610u
64
+ ··· + 6180.95u 2106.10
3.44579u
65
+ 7.31099u
64
+ ··· 4516.19u + 1545.50
a
5
=
1.21103u
65
2.58621u
64
+ ··· + 1614.03u 550.273
2.65367u
65
+ 5.65967u
64
+ ··· 3544.37u + 1207.93
a
4
=
3.44270u
65
7.34774u
64
+ ··· + 4580.96u 1560.01
2.08906u
65
+ 4.45851u
64
+ ··· 2799.61u + 954.194
a
9
=
1.82812u
65
+ 3.88511u
64
+ ··· 2437.77u + 836.494
1.49101u
65
3.16113u
64
+ ··· + 1941.13u 660.317
a
8
=
6.19671u
65
+ 13.2052u
64
+ ··· 8254.78u + 2813.85
4.20938u
65
8.93733u
64
+ ··· + 5543.38u 1893.47
a
8
=
6.19671u
65
+ 13.2052u
64
+ ··· 8254.78u + 2813.85
4.20938u
65
8.93733u
64
+ ··· + 5543.38u 1893.47
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.78436u
65
10.2758u
64
+ ··· + 6384.50u 2162.36
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
66
+ 5u
65
+ ··· + 34u + 4
c
2
u
66
+ 27u
65
+ ··· 12u + 16
c
3
, c
7
, c
8
u
66
u
65
+ ··· 56u + 11
c
4
u
66
3u
65
+ ··· 250u + 71
c
6
, c
10
u
66
3u
65
+ ··· + 698u + 391
c
9
u
66
+ u
65
+ ··· 470u + 241
c
11
u
66
7u
65
+ ··· 102u 67
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
66
+ 27y
65
+ ··· 12y + 16
c
2
y
66
+ 27y
65
+ ··· 164976y + 256
c
3
, c
7
, c
8
y
66
69y
65
+ ··· + 3574y + 121
c
4
y
66
+ 13y
65
+ ··· + 99380y + 5041
c
6
, c
10
y
66
41y
65
+ ··· 3193706y + 152881
c
9
y
66
21y
65
+ ··· 54610y + 58081
c
11
y
66
3y
65
+ ··· 228020y + 4489
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.553994 + 0.817132I
a = 0.58544 + 1.58860I
b = 0.070442 + 0.432736I
4.89628 + 4.04600I 0. 7.91470I
u = 0.553994 0.817132I
a = 0.58544 1.58860I
b = 0.070442 0.432736I
4.89628 4.04600I 0. + 7.91470I
u = 0.044651 + 1.027560I
a = 0.03585 1.60708I
b = 0.595192 0.987582I
0.53608 6.26556I 0. + 8.67399I
u = 0.044651 1.027560I
a = 0.03585 + 1.60708I
b = 0.595192 + 0.987582I
0.53608 + 6.26556I 0. 8.67399I
u = 1.057280 + 0.123271I
a = 0.299700 + 0.067824I
b = 1.073380 0.701395I
0.04052 3.80627I 0
u = 1.057280 0.123271I
a = 0.299700 0.067824I
b = 1.073380 + 0.701395I
0.04052 + 3.80627I 0
u = 0.580719 + 0.732261I
a = 0.07117 + 1.86879I
b = 0.428988 + 1.124710I
7.34513 + 3.69328I 5.70329 3.99766I
u = 0.580719 0.732261I
a = 0.07117 1.86879I
b = 0.428988 1.124710I
7.34513 3.69328I 5.70329 + 3.99766I
u = 0.546154 + 0.917664I
a = 1.02255 + 1.19790I
b = 0.178208 + 1.154380I
9.63085 + 2.05112I 0
u = 0.546154 0.917664I
a = 1.02255 1.19790I
b = 0.178208 1.154380I
9.63085 2.05112I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.024070 + 0.311697I
a = 0.41730 1.46428I
b = 0.032613 1.192350I
1.28697 + 4.18216I 0
u = 1.024070 0.311697I
a = 0.41730 + 1.46428I
b = 0.032613 + 1.192350I
1.28697 4.18216I 0
u = 0.197995 + 0.874170I
a = 0.140181 + 0.842371I
b = 0.574376 + 0.595359I
0.60022 1.53805I 2.72682 + 4.17703I
u = 0.197995 0.874170I
a = 0.140181 0.842371I
b = 0.574376 0.595359I
0.60022 + 1.53805I 2.72682 4.17703I
u = 0.057515 + 1.110030I
a = 0.176652 + 0.885390I
b = 0.641007 + 0.405819I
5.13042 + 4.43339I 0
u = 0.057515 1.110030I
a = 0.176652 0.885390I
b = 0.641007 0.405819I
5.13042 4.43339I 0
u = 0.866529 + 0.013355I
a = 1.33674 + 0.64592I
b = 0.873691 + 1.006930I
0.89589 + 3.10402I 0.54343 3.05170I
u = 0.866529 0.013355I
a = 1.33674 0.64592I
b = 0.873691 1.006930I
0.89589 3.10402I 0.54343 + 3.05170I
u = 0.853665 + 0.135106I
a = 2.43454 + 0.28897I
b = 0.505356 0.698814I
4.10664 + 2.85933I 0.363943 0.476166I
u = 0.853665 0.135106I
a = 2.43454 0.28897I
b = 0.505356 + 0.698814I
4.10664 2.85933I 0.363943 + 0.476166I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.032450 + 0.507113I
a = 0.217969 1.258850I
b = 0.038438 1.392570I
8.05212 7.21112I 0
u = 1.032450 0.507113I
a = 0.217969 + 1.258850I
b = 0.038438 + 1.392570I
8.05212 + 7.21112I 0
u = 1.144210 + 0.214797I
a = 0.961366 0.866826I
b = 0.744120 1.117900I
2.95387 + 4.62224I 0
u = 1.144210 0.214797I
a = 0.961366 + 0.866826I
b = 0.744120 + 1.117900I
2.95387 4.62224I 0
u = 1.136700 + 0.303584I
a = 1.56569 0.14302I
b = 0.543699 + 0.963909I
4.97139 + 7.17182I 0
u = 1.136700 0.303584I
a = 1.56569 + 0.14302I
b = 0.543699 0.963909I
4.97139 7.17182I 0
u = 0.809325 + 0.115865I
a = 0.52327 2.10152I
b = 0.215765 1.035700I
0.545532 + 0.599797I 1.64339 + 2.56314I
u = 0.809325 0.115865I
a = 0.52327 + 2.10152I
b = 0.215765 + 1.035700I
0.545532 0.599797I 1.64339 2.56314I
u = 1.118470 + 0.456780I
a = 1.17750 + 1.75389I
b = 0.605458 + 1.064560I
2.13300 6.10455I 0
u = 1.118470 0.456780I
a = 1.17750 1.75389I
b = 0.605458 1.064560I
2.13300 + 6.10455I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.209870 + 0.001472I
a = 0.291036 0.003235I
b = 0.958064 0.487956I
4.84160 + 1.58290I 0
u = 1.209870 0.001472I
a = 0.291036 + 0.003235I
b = 0.958064 + 0.487956I
4.84160 1.58290I 0
u = 0.992580 + 0.743807I
a = 0.829585 0.896312I
b = 0.333033 0.931189I
6.28712 + 1.90390I 0
u = 0.992580 0.743807I
a = 0.829585 + 0.896312I
b = 0.333033 + 0.931189I
6.28712 1.90390I 0
u = 0.661473 + 0.362026I
a = 0.388489 0.220994I
b = 0.758076 + 0.048117I
3.94345 0.27627I 0.20377 1.42170I
u = 0.661473 0.362026I
a = 0.388489 + 0.220994I
b = 0.758076 0.048117I
3.94345 + 0.27627I 0.20377 + 1.42170I
u = 1.217260 + 0.293215I
a = 0.209546 + 0.352710I
b = 0.699865 0.501839I
3.79937 1.04615I 0
u = 1.217260 0.293215I
a = 0.209546 0.352710I
b = 0.699865 + 0.501839I
3.79937 + 1.04615I 0
u = 0.289729 + 0.632525I
a = 1.20205 + 2.02084I
b = 0.099360 + 0.983650I
3.46107 0.67912I 7.42755 + 0.90755I
u = 0.289729 0.632525I
a = 1.20205 2.02084I
b = 0.099360 0.983650I
3.46107 + 0.67912I 7.42755 0.90755I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.31931
a = 0.452314
b = 0.200297
2.96244 0
u = 1.33669
a = 0.327933
b = 1.10352
1.97498 0
u = 1.336450 + 0.216760I
a = 0.754740 0.809320I
b = 0.69935 1.27364I
1.61048 6.33014I 0
u = 1.336450 0.216760I
a = 0.754740 + 0.809320I
b = 0.69935 + 1.27364I
1.61048 + 6.33014I 0
u = 1.313190 + 0.421616I
a = 0.007522 + 0.224374I
b = 0.882628 0.511949I
5.12672 + 6.11193I 0
u = 1.313190 0.421616I
a = 0.007522 0.224374I
b = 0.882628 + 0.511949I
5.12672 6.11193I 0
u = 0.138682 + 1.399980I
a = 0.020109 1.269570I
b = 0.589344 1.066960I
6.95817 + 9.29076I 0
u = 0.138682 1.399980I
a = 0.020109 + 1.269570I
b = 0.589344 + 1.066960I
6.95817 9.29076I 0
u = 1.30750 + 0.54957I
a = 1.06901 + 1.35517I
b = 0.673865 + 1.105880I
3.31701 + 11.86690I 0
u = 1.30750 0.54957I
a = 1.06901 1.35517I
b = 0.673865 1.105880I
3.31701 11.86690I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.35147 + 0.54191I
a = 0.063163 + 0.131606I
b = 0.988314 0.489276I
0.83745 10.20370I 0
u = 1.35147 0.54191I
a = 0.063163 0.131606I
b = 0.988314 + 0.489276I
0.83745 + 10.20370I 0
u = 0.368991 + 0.379736I
a = 0.719106 + 0.942094I
b = 0.194366 + 0.419596I
0.210341 1.088940I 2.71206 + 6.43281I
u = 0.368991 0.379736I
a = 0.719106 0.942094I
b = 0.194366 0.419596I
0.210341 + 1.088940I 2.71206 6.43281I
u = 1.36359 + 0.61753I
a = 0.881623 1.082620I
b = 0.636156 0.930272I
3.70447 4.43878I 0
u = 1.36359 0.61753I
a = 0.881623 + 1.082620I
b = 0.636156 + 0.930272I
3.70447 + 4.43878I 0
u = 1.28331 + 0.78007I
a = 0.160169 + 0.274884I
b = 0.762107 + 0.779221I
0.022290 + 1.139270I 0
u = 1.28331 0.78007I
a = 0.160169 0.274884I
b = 0.762107 0.779221I
0.022290 1.139270I 0
u = 1.47641 + 0.39183I
a = 0.248686 + 0.207203I
b = 0.644167 + 0.746103I
4.27222 + 0.57322I 0
u = 1.47641 0.39183I
a = 0.248686 0.207203I
b = 0.644167 0.746103I
4.27222 0.57322I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.411878 + 0.216634I
a = 0.83054 2.42396I
b = 0.446886 1.198200I
7.34762 4.66083I 3.40198 1.35385I
u = 0.411878 0.216634I
a = 0.83054 + 2.42396I
b = 0.446886 + 1.198200I
7.34762 + 4.66083I 3.40198 + 1.35385I
u = 1.40430 + 0.66218I
a = 0.92865 + 1.22021I
b = 0.703220 + 1.153400I
2.8953 16.3430I 0
u = 1.40430 0.66218I
a = 0.92865 1.22021I
b = 0.703220 1.153400I
2.8953 + 16.3430I 0
u = 1.24829 + 0.96945I
a = 0.789126 1.086330I
b = 0.716542 0.934610I
0.45544 + 6.74104I 0
u = 1.24829 0.96945I
a = 0.789126 + 1.086330I
b = 0.716542 + 0.934610I
0.45544 6.74104I 0
11
II.
I
u
2
= hu
12
2u
11
+· · ·+b3, u
13
+4u
12
+· · ·+a7, u
14
2u
13
+· · ·6u
2
+1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
u
13
4u
12
+ ··· 11u + 7
u
12
+ 2u
11
+ ··· 3u + 3
a
11
=
u
u
3
+ u
a
1
=
u
13
3u
12
+ ··· 8u + 4
u
12
+ 2u
11
+ ··· 3u + 3
a
3
=
u
13
4u
12
+ ··· 6u + 6
u
7
u
6
3u
5
+ 3u
4
+ 2u
3
3u
2
+ u + 1
a
5
=
4u
13
9u
12
+ ··· 9u + 3
u
13
2u
12
+ ··· 3u 1
a
4
=
5u
13
11u
12
+ ··· 11u + 3
2u
13
4u
12
+ ··· 4u 1
a
9
=
u
13
+ 3u
12
+ ··· + 10u 5
u
12
2u
11
+ ··· + 4u 4
a
8
=
2u
13
+ 3u
12
+ ··· + 5u + 1
u
12
u
11
6u
10
+ 6u
9
+ 14u
8
15u
7
15u
6
+ 20u
5
+ 6u
4
14u
3
+ 4u
a
8
=
2u
13
+ 3u
12
+ ··· + 5u + 1
u
12
u
11
6u
10
+ 6u
9
+ 14u
8
15u
7
15u
6
+ 20u
5
+ 6u
4
14u
3
+ 4u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
13
+ 11u
12
+ 40u
11
69u
10
84u
9
+ 177u
8
+ 62u
7
230u
6
+
27u
5
+ 152u
4
64u
3
43u
2
+ 19u
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
u
13
+ ··· u + 1
c
2
u
14
+ 7u
13
+ ··· + 7u + 1
c
3
u
14
7u
12
+ ··· 6u
2
+ 1
c
4
u
14
+ 3u
11
+ 2u
10
+ u
8
+ 3u
6
u
5
u
4
2u
3
+ u
2
+ 1
c
5
u
14
+ u
13
+ ··· + u + 1
c
6
u
14
2u
13
+ ··· 6u
2
+ 1
c
7
, c
8
u
14
7u
12
+ ··· 6u
2
+ 1
c
9
u
14
+ u
12
2u
11
u
10
u
9
+ 3u
8
+ u
6
+ 2u
4
+ 3u
3
+ 1
c
10
u
14
+ 2u
13
+ ··· 6u
2
+ 1
c
11
u
14
2u
12
+ 3u
10
u
9
+ u
8
+ 7u
7
+ 2u
6
2u
5
+ 2u
4
+ 2u
3
+ u
2
+ 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
14
+ 7y
13
+ ··· + 7y + 1
c
2
y
14
+ 7y
13
+ ··· + 3y + 1
c
3
, c
7
, c
8
y
14
14y
13
+ ··· 12y + 1
c
4
y
14
+ 4y
12
+ ··· + 2y + 1
c
6
, c
10
y
14
14y
13
+ ··· 12y + 1
c
9
y
14
+ 2y
13
+ ··· + 4y
2
+ 1
c
11
y
14
4y
13
+ ··· 2y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.596231 + 0.643046I
a = 0.81845 + 2.50573I
b = 0.203371 + 0.690149I
5.26561 + 3.25287I 6.82202 1.57098I
u = 0.596231 0.643046I
a = 0.81845 2.50573I
b = 0.203371 0.690149I
5.26561 3.25287I 6.82202 + 1.57098I
u = 1.086550 + 0.327347I
a = 1.11518 1.19569I
b = 0.646482 1.025240I
2.26991 4.07125I 0.78077 + 2.79812I
u = 1.086550 0.327347I
a = 1.11518 + 1.19569I
b = 0.646482 + 1.025240I
2.26991 + 4.07125I 0.78077 2.79812I
u = 1.250560 + 0.436225I
a = 0.826732 0.714819I
b = 0.790207 1.045030I
0.94118 + 5.35545I 0.99788 4.06151I
u = 1.250560 0.436225I
a = 0.826732 + 0.714819I
b = 0.790207 + 1.045030I
0.94118 5.35545I 0.99788 + 4.06151I
u = 0.548029 + 0.362087I
a = 0.82146 1.24943I
b = 0.324639 1.160970I
7.21557 + 5.51825I 2.78614 6.97305I
u = 0.548029 0.362087I
a = 0.82146 + 1.24943I
b = 0.324639 + 1.160970I
7.21557 5.51825I 2.78614 + 6.97305I
u = 1.337530 + 0.185973I
a = 0.156832 0.018857I
b = 0.586268 + 0.660807I
3.49025 + 0.87643I 1.45603 4.57034I
u = 1.337530 0.185973I
a = 0.156832 + 0.018857I
b = 0.586268 0.660807I
3.49025 0.87643I 1.45603 + 4.57034I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.534535 + 0.096454I
a = 2.05204 + 2.53274I
b = 0.253909 + 0.916694I
1.18133 + 1.08400I 6.90405 2.11871I
u = 0.534535 0.096454I
a = 2.05204 2.53274I
b = 0.253909 0.916694I
1.18133 1.08400I 6.90405 + 2.11871I
u = 1.56380 + 0.18585I
a = 0.533141 + 0.309692I
b = 0.668443 + 0.547497I
0.618868 0.444831I 2.27753 + 0.29534I
u = 1.56380 0.18585I
a = 0.533141 0.309692I
b = 0.668443 0.547497I
0.618868 + 0.444831I 2.27753 0.29534I
16
III. I
u
3
=
h−u
5
+2u
4
+u
3
2u
2
+bu, u
5
+2u
4
+2u
3
4u
2
+au, u
10
4u
9
+· · ·+u+1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
u
5
2u
4
2u
3
+ 4u
2
+ u
u
5
2u
4
u
3
+ 2u
2
+ u
a
11
=
u
u
3
+ u
a
1
=
u
3
+ 2u
2
u
5
2u
4
u
3
+ 2u
2
+ u
a
3
=
u
8
4u
7
+ 3u
6
+ 5u
5
5u
4
3u
3
+ 2u
2
+ u
u
5
2u
4
u
3
+ 2u
2
+ u + 1
a
5
=
u
8
+ 4u
7
3u
6
5u
5
+ 5u
4
+ 3u
3
2u
2
u
u
5
+ 2u
4
+ u
3
2u
2
u 1
a
4
=
u
9
4u
8
+ 4u
7
+ 2u
6
5u
5
+ 2u
4
+ 2u
3
2u
2
u
u
9
+ 2u
8
+ 3u
7
4u
6
7u
5
+ 2u
4
+ 6u
3
+ 2u
2
+ u
a
9
=
u
2
+ 2u 1
u
4
2u
3
+ 2u
a
8
=
u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
8u
4
4u
3
+ 8u
2
+ 4u + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
3
, c
4
, c
7
c
8
u
10
2u
8
u
6
u
5
+ 2u
4
+ u
3
+ u
2
+ u + 1
c
6
, c
10
u
10
+ 4u
9
+ 2u
8
8u
7
5u
6
+ 7u
5
3u
3
+ 3u
2
u + 1
c
9
u
10
+ 2u
8
+ 4u
7
3u
6
+ u
5
+ 12u
4
+ u
3
5u
2
+ 3u + 3
c
11
u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
7u
5
+ 3u
3
+ 3u
2
+ u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
2
+ y + 1)
5
c
3
, c
4
, c
7
c
8
y
10
4y
9
+ 2y
8
+ 8y
7
5y
6
7y
5
+ 3y
3
+ 3y
2
+ y + 1
c
6
, c
10
, c
11
y
10
12y
9
+ 58y
8
140y
7
+ 167y
6
75y
5
5y
3
+ 3y
2
+ 5y + 1
c
9
y
10
+ 4y
9
+ ··· 39y + 9
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.976073 + 0.147815I
a = 2.22768 0.13034I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
u = 0.976073 0.147815I
a = 2.22768 + 0.13034I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.427474 + 0.537706I
a = 1.00546 1.92475I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.427474 0.537706I
a = 1.00546 + 1.92475I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
u = 0.064556 + 0.510596I
a = 0.96286 + 1.12461I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
u = 0.064556 0.510596I
a = 0.96286 1.12461I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 1.52905 + 0.35576I
a = 0.92852 1.14039I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 1.52905 0.35576I
a = 0.92852 + 1.14039I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
u = 1.80994 + 0.23506I
a = 0.312112 + 0.270713I
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
u = 1.80994 0.23506I
a = 0.312112 0.270713I
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
14
u
13
+ ··· u + 1)(u
66
+ 5u
65
+ ··· + 34u + 4)
c
2
((u
2
+ u + 1)
5
)(u
14
+ 7u
13
+ ··· + 7u + 1)(u
66
+ 27u
65
+ ··· 12u + 16)
c
3
(u
10
2u
8
+ ··· + u + 1)(u
14
7u
12
+ ··· 6u
2
+ 1)
· (u
66
u
65
+ ··· 56u + 11)
c
4
(u
10
2u
8
u
6
u
5
+ 2u
4
+ u
3
+ u
2
+ u + 1)
· (u
14
+ 3u
11
+ 2u
10
+ u
8
+ 3u
6
u
5
u
4
2u
3
+ u
2
+ 1)
· (u
66
3u
65
+ ··· 250u + 71)
c
5
((u
2
u + 1)
5
)(u
14
+ u
13
+ ··· + u + 1)(u
66
+ 5u
65
+ ··· + 34u + 4)
c
6
(u
10
+ 4u
9
+ 2u
8
8u
7
5u
6
+ 7u
5
3u
3
+ 3u
2
u + 1)
· (u
14
2u
13
+ ··· 6u
2
+ 1)(u
66
3u
65
+ ··· + 698u + 391)
c
7
, c
8
(u
10
2u
8
+ ··· + u + 1)(u
14
7u
12
+ ··· 6u
2
+ 1)
· (u
66
u
65
+ ··· 56u + 11)
c
9
(u
10
+ 2u
8
+ 4u
7
3u
6
+ u
5
+ 12u
4
+ u
3
5u
2
+ 3u + 3)
· (u
14
+ u
12
2u
11
u
10
u
9
+ 3u
8
+ u
6
+ 2u
4
+ 3u
3
+ 1)
· (u
66
+ u
65
+ ··· 470u + 241)
c
10
(u
10
+ 4u
9
+ 2u
8
8u
7
5u
6
+ 7u
5
3u
3
+ 3u
2
u + 1)
· (u
14
+ 2u
13
+ ··· 6u
2
+ 1)(u
66
3u
65
+ ··· + 698u + 391)
c
11
(u
10
4u
9
+ 2u
8
+ 8u
7
5u
6
7u
5
+ 3u
3
+ 3u
2
+ u + 1)
· (u
14
2u
12
+ 3u
10
u
9
+ u
8
+ 7u
7
+ 2u
6
2u
5
+ 2u
4
+ 2u
3
+ u
2
+ 2u + 1)
· (u
66
7u
65
+ ··· 102u 67)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
5
)(y
14
+ 7y
13
+ ··· + 7y + 1)(y
66
+ 27y
65
+ ··· 12y + 16)
c
2
((y
2
+ y + 1)
5
)(y
14
+ 7y
13
+ ··· + 3y + 1)
· (y
66
+ 27y
65
+ ··· 164976y + 256)
c
3
, c
7
, c
8
(y
10
4y
9
+ 2y
8
+ 8y
7
5y
6
7y
5
+ 3y
3
+ 3y
2
+ y + 1)
· (y
14
14y
13
+ ··· 12y + 1)(y
66
69y
65
+ ··· + 3574y + 121)
c
4
(y
10
4y
9
+ 2y
8
+ 8y
7
5y
6
7y
5
+ 3y
3
+ 3y
2
+ y + 1)
· (y
14
+ 4y
12
+ ··· + 2y + 1)(y
66
+ 13y
65
+ ··· + 99380y + 5041)
c
6
, c
10
(y
10
12y
9
+ 58y
8
140y
7
+ 167y
6
75y
5
5y
3
+ 3y
2
+ 5y + 1)
· (y
14
14y
13
+ ··· 12y + 1)
· (y
66
41y
65
+ ··· 3193706y + 152881)
c
9
(y
10
+ 4y
9
+ ··· 39y + 9)(y
14
+ 2y
13
+ ··· + 4y
2
+ 1)
· (y
66
21y
65
+ ··· 54610y + 58081)
c
11
(y
10
12y
9
+ 58y
8
140y
7
+ 167y
6
75y
5
5y
3
+ 3y
2
+ 5y + 1)
· (y
14
4y
13
+ ··· 2y + 1)(y
66
3y
65
+ ··· 228020y + 4489)
22