11a
115
(K11a
115
)
A knot diagram
1
Linearized knot diagam
5 1 7 10 2 9 3 11 4 6 8
Solving Sequence
1,5
2 3
6,8
7 11 9 10 4
c
1
c
2
c
5
c
7
c
11
c
8
c
10
c
4
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3.32851 × 10
102
u
77
1.61333 × 10
103
u
76
+ ··· + 2.32216 × 10
103
b + 2.92650 × 10
103
,
2.22107 × 10
103
u
77
+ 8.11330 × 10
103
u
76
+ ··· + 2.32216 × 10
103
a + 2.42675 × 10
104
,
u
78
3u
77
+ ··· + 10u + 1i
I
u
2
= h−2u
17
2u
16
+ ··· + b 3, 4u
17
5u
16
+ ··· + a 3, u
18
+ 2u
17
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 96 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.33 × 10
102
u
77
1.61 × 10
103
u
76
+ · · · + 2.32 × 10
103
b + 2.93 ×
10
103
, 2.22 × 10
103
u
77
+ 8.11 × 10
103
u
76
+ · · · + 2.32 × 10
103
a + 2.43 ×
10
104
, u
78
3u
77
+ · · · + 10u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
0.956467u
77
3.49386u
76
+ ··· + 58.2139u 10.4504
0.143337u
77
+ 0.694752u
76
+ ··· 11.2798u 1.26025
a
7
=
0.623458u
77
2.49883u
76
+ ··· + 44.5704u 11.9913
0.180850u
77
+ 0.890365u
76
+ ··· 11.7000u 1.33932
a
11
=
0.963362u
77
+ 3.15022u
76
+ ··· 117.362u 14.6971
0.255022u
77
+ 0.791044u
76
+ ··· 5.96319u + 0.0156746
a
9
=
0.580789u
77
+ 1.58696u
76
+ ··· 51.0047u 13.6034
0.323044u
77
1.22096u
76
+ ··· 4.39700u + 0.102187
a
10
=
1.25538u
77
+ 3.66967u
76
+ ··· 115.076u 14.3275
0.0438473u
77
+ 0.659953u
76
+ ··· 4.39108u + 0.00274049
a
4
=
1.66912u
77
5.04900u
76
+ ··· + 142.099u + 20.3371
0.229652u
77
+ 0.323047u
76
+ ··· + 9.44012u + 0.185234
a
4
=
1.66912u
77
5.04900u
76
+ ··· + 142.099u + 20.3371
0.229652u
77
+ 0.323047u
76
+ ··· + 9.44012u + 0.185234
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.440746u
77
+ 0.132996u
76
+ ··· + 82.1887u + 8.36358
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
78
+ 3u
77
+ ··· 10u + 1
c
2
u
78
+ 27u
77
+ ··· 82u + 1
c
3
, c
7
u
78
+ u
77
+ ··· + 658u + 59
c
4
, c
9
u
78
+ u
77
+ ··· 2u + 1
c
6
u
78
+ 10u
77
+ ··· + 194051u + 23683
c
8
, c
11
u
78
4u
77
+ ··· 1235u + 271
c
10
u
78
2u
77
+ ··· 34703u + 4663
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
78
27y
77
+ ··· + 82y + 1
c
2
y
78
+ 57y
77
+ ··· + 3662y + 1
c
3
, c
7
y
78
+ 73y
77
+ ··· 596276y + 3481
c
4
, c
9
y
78
59y
77
+ ··· 128y + 1
c
6
y
78
36y
77
+ ··· 17292910371y + 560884489
c
8
, c
11
y
78
+ 60y
77
+ ··· 1616823y + 73441
c
10
y
78
32y
77
+ ··· 28280283y + 21743569
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.919382 + 0.415096I
a = 0.319202 0.766497I
b = 0.705973 0.119570I
1.84172 1.54832I 0
u = 0.919382 0.415096I
a = 0.319202 + 0.766497I
b = 0.705973 + 0.119570I
1.84172 + 1.54832I 0
u = 0.651027 + 0.778881I
a = 0.651319 0.808354I
b = 0.351881 0.133943I
6.48100 3.09388I 0
u = 0.651027 0.778881I
a = 0.651319 + 0.808354I
b = 0.351881 + 0.133943I
6.48100 + 3.09388I 0
u = 0.980487 + 0.091787I
a = 0.786643 + 0.077505I
b = 0.441029 0.187587I
1.67404 0.08608I 0
u = 0.980487 0.091787I
a = 0.786643 0.077505I
b = 0.441029 + 0.187587I
1.67404 + 0.08608I 0
u = 0.510641 + 0.879678I
a = 0.07433 + 1.43681I
b = 0.084266 1.336750I
7.01017 + 0.55763I 0
u = 0.510641 0.879678I
a = 0.07433 1.43681I
b = 0.084266 + 1.336750I
7.01017 0.55763I 0
u = 0.683117 + 0.756267I
a = 0.68410 + 2.40034I
b = 0.175954 1.224060I
6.61578 3.90393I 0
u = 0.683117 0.756267I
a = 0.68410 2.40034I
b = 0.175954 + 1.224060I
6.61578 + 3.90393I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.912558 + 0.348343I
a = 0.947042 + 0.537303I
b = 0.787513 0.609067I
2.10532 + 3.54417I 0
u = 0.912558 0.348343I
a = 0.947042 0.537303I
b = 0.787513 + 0.609067I
2.10532 3.54417I 0
u = 0.854307 + 0.613428I
a = 0.502806 0.147246I
b = 0.520280 0.175145I
2.08259 + 2.42309I 0
u = 0.854307 0.613428I
a = 0.502806 + 0.147246I
b = 0.520280 + 0.175145I
2.08259 2.42309I 0
u = 0.785103 + 0.701110I
a = 0.29828 + 1.88835I
b = 0.165797 1.365190I
10.31720 + 0.07253I 0
u = 0.785103 0.701110I
a = 0.29828 1.88835I
b = 0.165797 + 1.365190I
10.31720 0.07253I 0
u = 1.051310 + 0.134686I
a = 0.534104 + 0.782333I
b = 0.661388 0.288377I
1.42489 + 4.47911I 0
u = 1.051310 0.134686I
a = 0.534104 0.782333I
b = 0.661388 + 0.288377I
1.42489 4.47911I 0
u = 0.823137 + 0.670951I
a = 1.04974 + 1.76751I
b = 0.110492 1.219630I
2.31988 + 0.18759I 0
u = 0.823137 0.670951I
a = 1.04974 1.76751I
b = 0.110492 + 1.219630I
2.31988 0.18759I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.625258 + 0.864565I
a = 0.58964 1.50488I
b = 0.43046 + 1.58093I
8.01275 4.37942I 0
u = 0.625258 0.864565I
a = 0.58964 + 1.50488I
b = 0.43046 1.58093I
8.01275 + 4.37942I 0
u = 0.721996 + 0.787512I
a = 0.391090 + 0.643123I
b = 1.205930 + 0.306716I
7.57591 + 4.18168I 0
u = 0.721996 0.787512I
a = 0.391090 0.643123I
b = 1.205930 0.306716I
7.57591 4.18168I 0
u = 0.646393 + 0.857994I
a = 0.57056 1.86291I
b = 0.330634 + 1.210310I
6.63045 + 2.08529I 0
u = 0.646393 0.857994I
a = 0.57056 + 1.86291I
b = 0.330634 1.210310I
6.63045 2.08529I 0
u = 1.091450 + 0.073360I
a = 0.785955 + 0.496692I
b = 0.428556 1.064990I
0.82847 3.56102I 0
u = 1.091450 0.073360I
a = 0.785955 0.496692I
b = 0.428556 + 1.064990I
0.82847 + 3.56102I 0
u = 0.900766 + 0.062670I
a = 0.07406 + 1.84676I
b = 0.241501 + 1.105310I
6.20657 0.98958I 60.902681 + 0.10I
u = 0.900766 0.062670I
a = 0.07406 1.84676I
b = 0.241501 1.105310I
6.20657 + 0.98958I 60.902681 + 0.10I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.796237 + 0.760422I
a = 0.738120 1.145030I
b = 0.63396 + 1.61284I
11.42440 2.49625I 0
u = 0.796237 0.760422I
a = 0.738120 + 1.145030I
b = 0.63396 1.61284I
11.42440 + 2.49625I 0
u = 0.867555 + 0.688655I
a = 0.353143 + 0.969190I
b = 1.57794 + 0.12915I
1.69309 + 2.65199I 0
u = 0.867555 0.688655I
a = 0.353143 0.969190I
b = 1.57794 0.12915I
1.69309 2.65199I 0
u = 0.897871 + 0.675237I
a = 0.98099 2.00046I
b = 0.327853 + 1.299700I
2.08862 5.40076I 0
u = 0.897871 0.675237I
a = 0.98099 + 2.00046I
b = 0.327853 1.299700I
2.08862 + 5.40076I 0
u = 0.471260 + 0.715322I
a = 0.367913 + 0.003194I
b = 0.577762 + 0.019556I
3.10549 1.21428I 6 0.932552 + 0.10I
u = 0.471260 0.715322I
a = 0.367913 0.003194I
b = 0.577762 0.019556I
3.10549 + 1.21428I 6 0.932552 + 0.10I
u = 0.934384 + 0.682083I
a = 2.19405 1.31253I
b = 0.209204 + 1.238200I
9.85296 5.39790I 0
u = 0.934384 0.682083I
a = 2.19405 + 1.31253I
b = 0.209204 1.238200I
9.85296 + 5.39790I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.806544 + 0.123097I
a = 0.539789 + 0.141829I
b = 0.637200 + 0.917242I
1.17381 1.68388I 0.83726 6.01771I
u = 0.806544 0.123097I
a = 0.539789 0.141829I
b = 0.637200 0.917242I
1.17381 + 1.68388I 0.83726 + 6.01771I
u = 0.940160 + 0.729085I
a = 1.30654 + 1.57774I
b = 0.76597 1.46965I
10.98100 3.15371I 0
u = 0.940160 0.729085I
a = 1.30654 1.57774I
b = 0.76597 + 1.46965I
10.98100 + 3.15371I 0
u = 0.785464 + 0.142913I
a = 0.62353 1.64939I
b = 0.831715 + 0.510792I
1.32910 0.60787I 3.50485 2.67829I
u = 0.785464 0.142913I
a = 0.62353 + 1.64939I
b = 0.831715 0.510792I
1.32910 + 0.60787I 3.50485 + 2.67829I
u = 1.053060 + 0.586459I
a = 0.023473 0.712350I
b = 0.590557 + 0.019641I
1.39270 + 6.19483I 0
u = 1.053060 0.586459I
a = 0.023473 + 0.712350I
b = 0.590557 0.019641I
1.39270 6.19483I 0
u = 0.650281 + 1.026430I
a = 0.39794 1.45251I
b = 0.44162 + 1.48170I
13.3117 + 9.8514I 0
u = 0.650281 1.026430I
a = 0.39794 + 1.45251I
b = 0.44162 1.48170I
13.3117 9.8514I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.003170 + 0.699177I
a = 1.20363 2.06396I
b = 0.276298 + 1.317430I
5.65322 + 9.45248I 0
u = 1.003170 0.699177I
a = 1.20363 + 2.06396I
b = 0.276298 1.317430I
5.65322 9.45248I 0
u = 0.991949 + 0.723933I
a = 0.029164 + 0.815832I
b = 1.324200 0.107360I
6.75517 9.89412I 0
u = 0.991949 0.723933I
a = 0.029164 0.815832I
b = 1.324200 + 0.107360I
6.75517 + 9.89412I 0
u = 1.224710 + 0.112853I
a = 0.237600 + 0.305151I
b = 0.268395 + 1.179100I
1.03395 3.16868I 0
u = 1.224710 0.112853I
a = 0.237600 0.305151I
b = 0.268395 1.179100I
1.03395 + 3.16868I 0
u = 1.025600 + 0.727427I
a = 0.186084 + 0.163814I
b = 0.616269 0.163910I
5.36964 2.62564I 0
u = 1.025600 0.727427I
a = 0.186084 0.163814I
b = 0.616269 + 0.163910I
5.36964 + 2.62564I 0
u = 1.058580 + 0.726505I
a = 1.27853 + 1.47897I
b = 0.60139 1.55104I
6.70371 + 10.29660I 0
u = 1.058580 0.726505I
a = 1.27853 1.47897I
b = 0.60139 + 1.55104I
6.70371 10.29660I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.040720 + 0.774309I
a = 0.70860 + 1.25362I
b = 0.097731 1.271840I
5.46363 + 3.99334I 0
u = 1.040720 0.774309I
a = 0.70860 1.25362I
b = 0.097731 + 1.271840I
5.46363 3.99334I 0
u = 1.098500 + 0.730187I
a = 1.24857 1.08059I
b = 0.254548 + 1.221860I
5.29888 + 5.39356I 0
u = 1.098500 0.730187I
a = 1.24857 + 1.08059I
b = 0.254548 1.221860I
5.29888 5.39356I 0
u = 1.115900 + 0.788410I
a = 1.18485 + 1.48176I
b = 0.55541 1.48099I
11.8295 16.4283I 0
u = 1.115900 0.788410I
a = 1.18485 1.48176I
b = 0.55541 + 1.48099I
11.8295 + 16.4283I 0
u = 0.45896 + 1.35957I
a = 0.065261 + 1.254430I
b = 0.046387 1.281840I
10.84600 2.03461I 0
u = 0.45896 1.35957I
a = 0.065261 1.254430I
b = 0.046387 + 1.281840I
10.84600 + 2.03461I 0
u = 1.43030 + 0.30968I
a = 0.462230 0.259484I
b = 0.251800 + 1.189590I
4.19571 + 7.76962I 0
u = 1.43030 0.30968I
a = 0.462230 + 0.259484I
b = 0.251800 1.189590I
4.19571 7.76962I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.489302 + 0.114434I
a = 1.24057 + 1.69081I
b = 0.11108 1.50372I
7.78823 + 1.62906I 3.05008 4.47531I
u = 0.489302 0.114434I
a = 1.24057 1.69081I
b = 0.11108 + 1.50372I
7.78823 1.62906I 3.05008 + 4.47531I
u = 1.24794 + 0.95730I
a = 0.717195 1.121420I
b = 0.280618 + 1.201350I
8.51017 5.96874I 0
u = 1.24794 0.95730I
a = 0.717195 + 1.121420I
b = 0.280618 1.201350I
8.51017 + 5.96874I 0
u = 0.013339 + 0.320104I
a = 1.39879 0.45191I
b = 0.373310 + 0.454562I
0.078062 1.100560I 1.42175 + 6.23894I
u = 0.013339 0.320104I
a = 1.39879 + 0.45191I
b = 0.373310 0.454562I
0.078062 + 1.100560I 1.42175 6.23894I
u = 0.0520369 + 0.1011840I
a = 15.3453 + 3.5674I
b = 0.351925 0.721276I
5.14575 3.44483I 3.90868 + 8.31277I
u = 0.0520369 0.1011840I
a = 15.3453 3.5674I
b = 0.351925 + 0.721276I
5.14575 + 3.44483I 3.90868 8.31277I
12
II. I
u
2
=
h−2u
17
2u
16
+· · ·+b 3, 4u
17
5u
16
+· · ·+a 3, u
18
+2u
17
+· · ·+2u +1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
4u
17
+ 5u
16
+ ··· + 3u + 3
2u
17
+ 2u
16
+ ··· + 5u + 3
a
7
=
3u
17
+ 3u
16
+ ··· + 3u + 1
2u
17
+ 2u
16
+ ··· + 6u + 3
a
11
=
3u
17
+ 6u
16
+ ··· + 4u + 8
2u
17
4u
16
+ ··· + 9u
2
1
a
9
=
u
17
3u
15
+ ··· + 9u
2
4
u
16
3u
15
+ ··· + 4u + 3
a
10
=
4u
17
+ 7u
16
+ ··· + 3u + 6
u
17
2u
16
+ ··· + 2u + 2
a
4
=
2u
17
+ 4u
16
+ ··· 13u
2
+ 5
u
17
+ 4u
15
+ ··· u + 2
a
4
=
2u
17
+ 4u
16
+ ··· 13u
2
+ 5
u
17
+ 4u
15
+ ··· u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
+ 12u
16
+ 7u
15
17u
14
12u
13
+ 41u
12
+ 54u
11
33u
10
85u
9
+ 12u
8
+ 97u
7
u
6
90u
5
6u
4
+ 70u
3
+ 18u
2
28u 16
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 2u
17
+ ··· + 2u + 1
c
2
u
18
+ 8u
17
+ ··· + 8u + 1
c
3
u
18
+ 10u
16
+ ··· 6u + 1
c
4
u
18
6u
16
+ ··· + 9u
2
+ 1
c
5
u
18
2u
17
+ ··· 2u + 1
c
6
u
18
+ 3u
17
+ ··· + 7u + 1
c
7
u
18
+ 10u
16
+ ··· + 6u + 1
c
8
u
18
3u
17
+ ··· 3u + 1
c
9
u
18
6u
16
+ ··· + 9u
2
+ 1
c
10
u
18
+ u
17
+ ··· + u + 1
c
11
u
18
+ 3u
17
+ ··· + 3u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
18
8y
17
+ ··· 8y + 1
c
2
y
18
+ 12y
17
+ ··· + 8y + 1
c
3
, c
7
y
18
+ 20y
17
+ ··· + 2y + 1
c
4
, c
9
y
18
12y
17
+ ··· + 18y + 1
c
6
y
18
5y
17
+ ··· 17y + 1
c
8
, c
11
y
18
+ 11y
17
+ ··· + 7y + 1
c
10
y
18
5y
17
+ ··· 9y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.600980 + 0.789755I
a = 0.005827 + 0.968886I
b = 0.244466 1.282710I
9.11732 1.68939I 4.72142 + 2.78192I
u = 0.600980 0.789755I
a = 0.005827 0.968886I
b = 0.244466 + 1.282710I
9.11732 + 1.68939I 4.72142 2.78192I
u = 0.882213 + 0.342814I
a = 0.473394 + 1.217710I
b = 0.686177 0.146117I
1.03138 1.46977I 0.74998 + 4.28225I
u = 0.882213 0.342814I
a = 0.473394 1.217710I
b = 0.686177 + 0.146117I
1.03138 + 1.46977I 0.74998 4.28225I
u = 0.867359 + 0.630592I
a = 0.069787 0.673710I
b = 1.169260 0.096853I
0.76282 + 2.46662I 3.87434 2.61953I
u = 0.867359 0.630592I
a = 0.069787 + 0.673710I
b = 1.169260 + 0.096853I
0.76282 2.46662I 3.87434 + 2.61953I
u = 0.878300 + 0.073533I
a = 0.610367 + 0.158854I
b = 0.545461 0.836793I
1.39353 2.18547I 5.73139 + 7.17501I
u = 0.878300 0.073533I
a = 0.610367 0.158854I
b = 0.545461 + 0.836793I
1.39353 + 2.18547I 5.73139 7.17501I
u = 1.141810 + 0.444651I
a = 0.300052 + 0.568408I
b = 0.123838 0.630055I
2.86239 + 5.92628I 1.35739 5.49734I
u = 1.141810 0.444651I
a = 0.300052 0.568408I
b = 0.123838 + 0.630055I
2.86239 5.92628I 1.35739 + 5.49734I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.963245 + 0.833701I
a = 1.17457 1.26015I
b = 0.342226 + 1.036720I
8.06866 4.51985I 3.88251 + 3.07468I
u = 0.963245 0.833701I
a = 1.17457 + 1.26015I
b = 0.342226 1.036720I
8.06866 + 4.51985I 3.88251 3.07468I
u = 0.667472 + 0.285364I
a = 1.11513 + 2.54893I
b = 0.325026 + 0.632338I
4.80242 2.81861I 1.84387 0.52056I
u = 0.667472 0.285364I
a = 1.11513 2.54893I
b = 0.325026 0.632338I
4.80242 + 2.81861I 1.84387 + 0.52056I
u = 0.482522 + 0.541462I
a = 0.41220 + 2.30716I
b = 0.04482 1.43171I
8.48319 0.98511I 5.24254 0.71087I
u = 0.482522 0.541462I
a = 0.41220 2.30716I
b = 0.04482 + 1.43171I
8.48319 + 0.98511I 5.24254 + 0.71087I
u = 1.165580 + 0.721113I
a = 1.13459 1.06778I
b = 0.179481 + 1.292250I
6.16158 + 6.28946I 3.99576 6.33325I
u = 1.165580 0.721113I
a = 1.13459 + 1.06778I
b = 0.179481 1.292250I
6.16158 6.28946I 3.99576 + 6.33325I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
+ 2u
17
+ ··· + 2u + 1)(u
78
+ 3u
77
+ ··· 10u + 1)
c
2
(u
18
+ 8u
17
+ ··· + 8u + 1)(u
78
+ 27u
77
+ ··· 82u + 1)
c
3
(u
18
+ 10u
16
+ ··· 6u + 1)(u
78
+ u
77
+ ··· + 658u + 59)
c
4
(u
18
6u
16
+ ··· + 9u
2
+ 1)(u
78
+ u
77
+ ··· 2u + 1)
c
5
(u
18
2u
17
+ ··· 2u + 1)(u
78
+ 3u
77
+ ··· 10u + 1)
c
6
(u
18
+ 3u
17
+ ··· + 7u + 1)(u
78
+ 10u
77
+ ··· + 194051u + 23683)
c
7
(u
18
+ 10u
16
+ ··· + 6u + 1)(u
78
+ u
77
+ ··· + 658u + 59)
c
8
(u
18
3u
17
+ ··· 3u + 1)(u
78
4u
77
+ ··· 1235u + 271)
c
9
(u
18
6u
16
+ ··· + 9u
2
+ 1)(u
78
+ u
77
+ ··· 2u + 1)
c
10
(u
18
+ u
17
+ ··· + u + 1)(u
78
2u
77
+ ··· 34703u + 4663)
c
11
(u
18
+ 3u
17
+ ··· + 3u + 1)(u
78
4u
77
+ ··· 1235u + 271)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
18
8y
17
+ ··· 8y + 1)(y
78
27y
77
+ ··· + 82y + 1)
c
2
(y
18
+ 12y
17
+ ··· + 8y + 1)(y
78
+ 57y
77
+ ··· + 3662y + 1)
c
3
, c
7
(y
18
+ 20y
17
+ ··· + 2y + 1)(y
78
+ 73y
77
+ ··· 596276y + 3481)
c
4
, c
9
(y
18
12y
17
+ ··· + 18y + 1)(y
78
59y
77
+ ··· 128y + 1)
c
6
(y
18
5y
17
+ ··· 17y + 1)
· (y
78
36y
77
+ ··· 17292910371y + 560884489)
c
8
, c
11
(y
18
+ 11y
17
+ ··· + 7y + 1)(y
78
+ 60y
77
+ ··· 1616823y + 73441)
c
10
(y
18
5y
17
+ ··· 9y + 1)
· (y
78
32y
77
+ ··· 28280283y + 21743569)
19